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Abstract. Applying deep reinforcement learning-based visual active tra-
cking algorithms in real-world environments is challenging due to com-
plex surface textures and lighting variations. To tackle these issues while
enhancing training efficiency, we propose a teacher-student framework-
based visual active tracking algorithm. Our algorithm trains the teacher
module using deep reinforcement learning, followed by supervised train-
ing of the student module with labels generated by the trained teacher.
Instead of rendering images, privileged information is leveraged to re-
duce the teacher module’s state space, thereby accelerating the train-
ing process. To further optimize efficiency while training the student
module, a student database is employed to prevent re-rendering images.
Additionally, image segmentation and data augmentation are incorpo-
rated to enhance the robustness of the student module. Experimental re-
sults show that our approach outperforms comparative algorithms while
substantially reducing computational resource usage and training time.
Real-world deployments of the student module in a complex indoor en-
vironment demonstrate that our method exhibits strong adaptability.

Keywords: Deep Reinforcement Learning - Visual Active Tracking -
Teacher-Student Framework.

1 Introduction

In recent years, applying deep reinforcement learning(DRL) for real-world de-
ployment of Visual Active Tracking (VAT) has gained significant attention.
[1]2][3][4]. Compared to passive visual tracking, which only focuses on the tar-
get objects within the frame, VAT can control actuators to change the position
and direction of the image sensor, keeping the target object within the frame by
maintaining an appropriate distance and angle with the target.

Among the input information that can complete the VAT task, the image
information provided by a monocular camera has lower acquisition cost. How-
ever, real-world images often present high complexity to the varying lighting
conditions and complex object surface textures, which significantly increase the
difficulty of image analysis, thereby making the real-world deployment of DRL
algorithms challenging [5].

In order to address the aforementioned issues, existing DRL approaches em-
ploy environment augmentation techniques to create simulation environment
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that closely mimic real-world conditions [2][6][7]. The neural network is trained
in the aforementioned environment, gaining experience in handling complex sit-
uations for application in real-world environments. However, these solutions sig-
nificantly increase memory usage and face problems such as long training periods
and debugging difficulties.

To address these issues, we have applied the Teacher-Student framework to
the VAT field for the first time, proposing the Teacher-Student Framework-Based
Visual Active Tracking Algorithm (T'S-VAT).

Our TS-VAT, trained on an NVIDIA RTX 2070 Super, outperforms the com-
parative VAT algorithm trained on two RTX 3090 GPUs, reducing Video Ran-
dom Access Memory(VRAM) usage by 92.5%, decreasing Random Access Mem-
ory(RAM) usage by 80%, shortening iteration time by 75%, and successfully
completing tracking tasks in real-world environments.

2 Related Work

2.1 Visual Active Tracking

Visual Active Tracking algorithms can be categorized into end-to-end and non-
end-to-end approaches (See Fig. 1). In non-end-to-end approaches, visual infor-
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Fig. 1: Existing VAT approaches

mation is first processed by a passive tracker to identify the target, and the
resulting passive tracking data is then input to the controller (Fig. 1la). This
multi-stage structure has issues with error accumulation and difficulty in debug-
ging. Whle the end-to-end approach uses an active tracker to directly output
action signals from image inputs (Fig. 1b).
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Many researchers have applied the end-to-end DRL algorithm to the field of
VAT due to its high efficiency, adaptability, and lack of error accumulation. In
2020, Luo et al. [2] were the first to propose an end-to-end Visual Active Tracking
algorithm, which outperformed the best passive trackers at the time. In 2021,
Zhong et al. [4] proposed AD-VAT, a reinforcement learning method based on
adversarial learning. In their algorithm, the tracker and target object are mod-
eled as learnable entities that enhance their capabilities through interaction and
competition during chasing and escaping. In 2023, Zhang et al. [3] introduced
a binocular stereo matching-based VAT method, which enhances target iden-
tification accuracy by incorporating depth information. In 2024, Mao et al. [§]
proposed CPO-AQT, an active object tracking framework based on constrained
policy optimization, which combines asynchronous training mechanisms and a
sparse reward function to address training challenges in high-dimensional state
spaces and partially observable environments.

2.2 Teacher-student Framework

The Teacher-Student framework, also referred to as knowledge distillation, is a
widely adopted technique for model compression and acceleration in deep learn-
ing. It was first introduced by Hinton et al. in 2015 [9].

In passive visual tracking field, Sohn et al. [10] were the first to propose a
training method based on the Teacher-Student framework for semi-supervised
learning in 2020, known as STAC. In 2022, Mi et al. [11] addressed the issue of the
large data dependency in semi-supervised learning for passive visual tracking by
proposing an active teacher method, achieving superior supervised performance
with smaller labeling expenditures.

Given the efficiency of the Teacher-Student framework in computation and
storage, applying it to reduce the training resource consumption of DRL-based
Visual Active Tracking is a feasible and meaningful research direction.

3 Owur Approach

In this section, we propose a T'S-VAT algorithm. Section 3.1 introduces the mod-
eling of tracking tasks in a virtual environment. Section 3.2 presents the specific
design of T'S-VAT, which requires training a teacher module and a student mod-
ule, detailed respectively in Sections 3.3 and 3.4.

3.1 Problem Formulation

Simulation Environment Turtlebot4 is used as the robot platform for the
experiment. The simulation environment for indoor tracking tasks utilizes Cop-
peliasim for robotic simulation, Pyrep for interfacing with reinforcement learning
frameworks, and Tianshou [12] for managing reinforcement learning operations.
The simulation environment is a 10m by 10m indoor space divided into three
sections: a bm by 10m area and two 5m by 5m areas. Rectangular obstacles
representing furniture and black cylindrical distractors are placed in each area.
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Tracking Target The tracking target is controlled by a designed algorithm
based on the vector field histogram algorithm(Proposed by Borenstein et al. [13]
in 1991.) that incorporates randomness, obstacle avoidance, and the ability to
use obstacles to evade trackers.

Tracking Task Our tracking task is run frame by frame by the simulator, with
the current simulation step defined as step. During the tracking process, the
distance and angle between the tracking target and the tracker are defined as L
and 0 (see Fig. 3). The simulator executes actions at each step and updates L
and 0. If either L or 6 exceeds the threshold, or if a collision occurs, the tracking
task is considered a failure.

3.2 TS-VAT Algorithm

To reduce the computational resource consumption of VAT, we propose the TS-
VAT algorithm (See Fig. 2), which is carried out in three steps:
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Fig.2: TS-VAT algorithm

The first step involves training the Teacher Module using a deep reinforce-
ment learning algorithm based on privileged information related to positioning
and obstacle information. Since the dimension of privileged information is much
smaller than that of image, VRAM consumption required for training is reduced.

The second step, as indicated by the blue line in Fig. 2, involves using the
trained teacher module to interact with the simulator to obtain action-image
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tuples, which are then stored in the student module’s database. This step ensures
that the simulator no longer needs to re-render the images when updating the
image processor in step 3, thus improving the efficiency of the algorithm.

The third step, as indicated by the pink line in Fig. 2, involves using the
image processor in the student module to perform image segmentation and data
augmentation on the images in the database, thereby unifying the virtual-real
image format and increase image complexity. Subsequently, based on the labels
provided by the teacher module, a student module is trained to give the cor-
rect actions for the tracking task based on the processed images. This process
enhances the robustness of the Student Module.

3.3 Teacher Module

Action space To facilitate the training of the teacher module, the discrete ac-
tion space is set as the action space for the teacher module. This action space
contains only five actions: move forward, move backward, rotate counterclock-
wise (turn left), rotate clockwise (turn right), and stop. Each action is defined
as a, and the set of all actions is defined as A.

State space To facilitate the training of the teacher module, the concept of
privileged information is used to design the state space. Privileged information
was proposed by Vanpik et al. [14], with the core idea of providing the net-
work with global perspective hints during deep learning training to enhance the
network’s performance.

270°

Fig. 3: tracking information

Fig. 3 represents the tracking situation at a certain moment. In the figure,
the pole represents the position of the tracker, and the polar axis represents the
orientation of the tracker. Point 7" and vector v; represent the position of the
tracking target and the current orientation of the tracker, respectively. L, 6, and
0, are the polar radius and polar angle of point 7" and the angle between v and

(ﬁ , respectively.
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We consider the indoor tracking task as a 2D rigid body model. Since the
tracking target has three degrees of freedom, its state can be determined by a set
of L, 8, and #,. These three parameters, along with the obstacle sensors directly
in front of the tracker, form the input for the teacher module. All possible values
of these inputs constitute the state space of the teacher module.

Reward Function The reward function for the teacher module is defined as:
Ri=ri+r, +7o, (1)
where 7; is the basic reward function, defined as:

|Lt - Lbest| B |9t - ebestl

=A- 2
Tt 0 b ( )
r1, is the inducement reward function, defined as:
2 re > 0.75%x A
ri, =415 r>r_;and r, <0.75% A (3)
0 else
To, is the obstacle avoidance reward function, defined as:

7
TOt = Z G(Ol) (4)

where G(O;) is the piecewise obstacle penalty function, defined as:

-04 0;<0.2
G(Oz) =<¢-0.1 0;<04 (5)
0 else

The above reward function decreases the reward when the tracking angle and
position deviate from the optimal values or when obstacles are nearby. Addition-
ally, a positive reward is given when the teacher module improves the tracking
performance.

Module The teacher module employs the Dueling Double DQN(D3QN) [15][16]
algorithm, which includes a Q-network and a target Q-network, both having the
same structure.

To train the the module, first, the teacher module interacts with the envi-
ronment using the e-greedy strategy. The € is set to 0.1. After the interaction is
completed, the trajectory of the agent in a tracking task of length n is recorded
as:

$1,01,7T1,52,02,72,"** 1 Sp,An,Tn (6)
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This trajectory can be divided into n quintuples of the form (s, at, 7, St41),
where s¢, at, and r; are the privileged information, the selected action, and the
reward obtained at time ¢, respectively.

After several interactions are completed, the temporal difference error is cal-
culated as:

0 = Q(sp,a5w) — (re + - arng‘a:z: Q(sty1,a;W")) (7)
ac
where the function @) represents the forward propagation of network, and w and
w’ are the parameters of the Q-network and the target Q-network, respectively.
Finally, the gradient information of §; is backpropagated to update the net-
work parameters.

3.4 Student Module

Student Database First, the teacher module is used to interact with the sim-
ulator using the same e-greedy strategy with a larger ¢ = 0.2. The trajectory
of the teacher module, including image information during a tracking task of
length n, is recorded as:

imgla 817im923 52, 7imgna Sn

where img; and s; are the image data from the unmanned platform camera and
the privileged information of the teacher module at time ¢, respectively.

Subsequently, the array of tuples (IMGy,T;) are stored in the student mod-
ule’s database, where T; is the action label output by the teacher module based
on the privileged information s; at time ¢, and I M G, is the image obtained after
processing mg;.

During testing in the virtual environment(section 4.3), the student module
is trained using (imgs, T¢). In the real environment(section 4.4), the student
module is trained using (IMGy, T;) to achieve virtual-to-real transfer.

Network The parameter update process for the student module is as follows:
a tuple (img,T;) is extracted from the training set of the student module’s
database. The student module performs forward propagation on img;, obtain-
ing the forward propagation result logits;. Subsequently, the cross-entropy loss
between logits; and the one-hot encoding of T} is calculated:

elogitst (Ty)

Z elogits, (a) (8)
acA

H(logits;, T) = — log

Finally, the gradient information of H (logits, T;) is backpropagated, and the
parameters of the student module are updated.
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4 EXPERIMENTAL RESULTS

In this section, we detail the implementation of our approach and discuss the
experimental campaign.

4.1 Experimental Setup

Teacher Module The structure of the Teacher Module is shown in Table 1 and
its parameters are updated with Adam with learning rate Ir = 5¢ — 5 and batch
size N, = 200. The reward discount factor v = 0.9 and buffer size Ng = 1eb.
One simulation starts with L = 1m, 6 = 0°, step = 0, collision = False, and
ends if L ¢ [Lyin, Limaz) OF 0 € [—Omaz, Omaz] O step > stepmaz or collision =
True, where Ly, = 0.4m,Lyae = 2m, stepmasz = 1000, 0,4 = 30°, step is
the number of simulation steps in the simulator, and collision is a bool value
indicating whether a collision has occurred.

Student Module student module’s network structure is set to be SqueezeNET
[17] and is trained with following arguments: Ir = le — 4, N, = 50. One student
module is tested in simulation environment on section 4.3 with its database’s im-
ages not being processed. While The others are tested in real-world environment
on section 4.4 with their databases’ images being processed.

Computing Platform All teacher module and student modules are trained on
a laptop equipped with NVIDIA RTX 2070 Super with 8GB of VRAM, an Intel
Core processor i7-10750h (6 cores, 12 threads, 2.4 GHz base frequency) and 32
GB of DDR4 RAM.

Table 1: Network and GPU Models of comparative algorithm and teacher module

. Layer GPU Model
Algorithm Params
1 9 3 1 5 (NVIDIA RTX)
Comparative % % FC256 FC5
VAT algorithm C8*8-1654 (C4*4-3252 FC256W 800k 2x3090
Teacher Module FC128 FC128 FC32 FC32 FOS 20k 2070 Super

FC32 FC32 FC1

4.2 Comparison algorithms

Comparative VAT algorithm The comparative VAT algorithm employs the
D3QN algorithm (see network structure in Table 1) with image input. It is
trained using the same hyperparameters as TS-VAT on a workstation equipped
with 2x NVIDIA RTX 3090 GPUs with 50GB of VRAM, an Intel Xeon 4210R
processor (10 cores, 20 threads, 2.6 GHz base frequency), and 128GB of DDR4
RAM. This setup significantly surpasses the training platform of TS-VAT.
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Artificial Potential Field Algorithm We design an artificial potential field
method(Proposed by Khatib et al. [18] in 1985.) as a comparative algorithm,
which controls the tracker by calculating the resultant force of the virtual re-
pulsive force from obstacles and the virtual attractive force from the tracking
target.

TS-VAT Using Image Augmentation We replace the image segmentation
method to form a comparative TS-VAT algorithm. This approach is the same
as the proposed TS-VAT except for its student database processor using Python
scripts "albumentations’ to implement image augmentation.

4.3 VAT on Simulation Environment

We conduct reinforcement learning training for the teacher module and the com-
parative algorithms in the constructed virtual environment (See Fig. 4). After
the training of the teacher module is completed, supervised learning training is
conducted for the student module (See Fig. 6a). Three types of student modules
are tested (See Table2). The experimental results show that the accuracy of the
student module increases with the number of network parameters. After balanc-
ing the number of parameters and accuracy, SqueezeNet is ultimately set as the
structure of the student module.

Table 2: Three pending network structures of student module

NetWork Parameter Depth Accuracy
Comparative VAT Network (See Table 1) 0.8M 5 layers  81%
ResNET50 [19] 25M 50 layers  92%
SqueezeNET [17] 1.2M 18 layers  89%

The teacher module, student module, Comparative APF algorithm, and
Comparative VAT algorithm are tested in the constructed environment. The
testing process involves starting the tracking task from a starting position that
the tracking unmanned platform has never encountered during training. Except
for a maximum tracking step length of 200 and the tracker’s forward speed and
turning speed being 10% slower than the tracking target, the movement method
of the tracking target and other termination conditions of the tracking task are
the same as in the training process. The test is repeated 100 times, and the
success rate and the ratio of the average test step length to the simulation step
limit are recorded(See Table 3).

The results indicate that: (1) In terms of training effectiveness, compared
to the comparative algorithms, the student module achieves a 6% increase in
tracking success rate while reducing VRAM and RAM usage by 95.5% and 80%,
respectively. With image input, the student module outperforms the APF algo-
rithm, which uses privileged information, thereby demonstrating the effectiveness
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Fig.4: Comparison of the Reinforcement Learning Training Processes of the
Teacher Network and the Comparative VAT Algorithm

Table 3: Comparison of computing resources
Train(Usage) Test(Rate)
VRAM  RAM Time Success Completion
<500MB <10GB <6h 91% 98.3%

TASK,/Module

Reinforcement Learning
of Teacher Module
Collecting Database
for Student Module
Supervised Learning
of Student Module

Reinforcement Learning

of comparative VAT algorithm

APF Algorithm - — - 84% 94.17%

<7GB <16GB <30h - -
<1800MB <16GB <3h 87% 96.8%

>40GB >80GB <4h 81% 93.4%

of our TS-VAT. However, the student module’s tracking performance is inferior
to that of the teacher module, suggesting that TS-VAT does not fully transfer
the teacher’s tracking strategy. (2) In terms of time cost, TS-VAT takes longer
than the comparative algorithms, with the most significant time consumption
attributed to the collection of the student module’s training database. (3) TS-
VAT, which runs on an NVIDIA RTX 2070 Super, outperforms the comparative
VAT algorithm on two NVIDIA RTX 3090, highlighting its ability to reduce
computational resource consumption.

4.4 VAT on Real-world Environment

To achieve virtual-to-real transfer, real images have been used as textures for
basic environment augmentation, providing the tracking environment with more
realistic textures(Fig. 5).



TS-VAT: Efficient Deployment in Visual Active Tracking 11

Fig. 5: Simulation environment with realistic textures

A new student module database is collected, and the images within it are
processed before the new student module is retrained (See Fig. 6b). The results

Accuracy

Accuracy
°

0 1 2 3 5 6 7 8 0 2 6 8

4 4
Time (h) Time (h)

(a) Without image processing (b) With image processing

Fig. 6: The sim-to-real training process of the student network

show a decrease in the accuracy of the student module, indicating that the
image processing method increases the diversity of the input images, helping
the network to adapt to the complexity of real-world environments in advance.
After the texture mapping and image processing operations are completed, the
comparative VAT algorithm and the student module are trained. Subsequently a
set of simple images(See Fig. 7) are used to test the tracking abilities of different
networks(See Table 4).

Results in Table 4 indicate that due to the significant increase in image com-
plexity, the training time of the comparative VAT algorithm lengthens consider-
ably. Additionally, the test results indicate that the comparative VAT algorithm
incorrectly provided control signals for following cases: right turn in Fig. 7a, left
turn in Fig. 7b, and left turn in Fig. 7d. In these cases, the comparative VAT
algorithm was disturbed by black objects in the background, leading to incorrect
decisions, demonstrating its low adaptability to complex real-world scenarios.
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Fig. 7: Real-world testing images

Table 4: Comparison of computing resources
Train(Usage)
VRAM RAM Time
<3GB <16GB <3h 100%

TASK/Module Test Accuracy

Supervised Learning
of Student Module
Reinforcement Learning

of comparative VAT algorithm >40GB >80GB >20h 40%

In contrast, the proposed TS-VAT algorithm performs very well in test-
ing, demonstrating strong adaptability and anti-interference capability. Since
the database has already been collected, the proposed TS-VAT algorithm can
reduce Video Random Access Memory(VRAM) usage by 92.5%, decrease Ran-
dom Access Memory(RAM) usage by 80%, shorten iteration time by 75%. This
indicates that the proposed TS-VAT algorithm can significantly reduce computa-
tional resource consumption and greatly enhance algorithm iteration efficiency.

Additionally, compared to the training process in the virtual environment
(See Table 3), the proposed TS-VAT’s time consumption and computational
resource usage are less sensitive to the complexity of tracking. This suggests
that the proposed T'S-VAT has the potential to be applied to more complex
tasks.

For real-world deployment experiments, a relatively complex indoor office
is selected as the deployment site. The site has a very complex background,
including tables, chairs, clutter, computers, etc. Two obstacles, a chair and a
trash can, representing common indoor obstacles, are placed within the site. The
results of the student models for the two transfer methods, image segmentation
and image augmentation, are shown in Fig. 8.

The experimental results indicate that the student modules from both trans-
fer methods choose a diagonal movement when the tracking target makes a right-
angle turn, moving directly in the direction of the tracking target’s movement.
This suggests that both have learned feasible tracking strategies. To quantita-
tively compare the differences between the two methods, a virtual scenario cor-
responding to the real tracking task is established, and ten repeated experiments
are conducted in both real and virtual environments. After the experiments are
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Fig. 8: Real-world tracking roadmap of student networks with two different trans-

fer methods

completed, the following four metrics are recorded (See Table 5):

n

1
Labs - E Z |Lt - Lbest| (9)
t=0
1 < 2
Loa = = Y _ (Lt = Lpest — 11.) (10)
n t=0
Oubs = Ly 0, — 0 11
abs—EZ|t_ best| ( )
t=0
1 & 5
astd Al = (et - ebest - /149) (12)
t=0

where L; and 6; are defined as shown in Fig.3, Lp.s and 0p.s: are the optimal
tracking distance and optimal tracking angle, respectively, and puy and pgy are
the average values of distance error and angle error, respectively.

The results in Table 5 show that in the virtual environment, there is no
significant difference in performance between the image processing method and
the image segmentation method. However, in the real environment, the perfor-
mance of both methods decreases, with the image segmentation method showing
a smaller decline and higher tracking success rate. This phenomenon suggests
that the image segmentation method exhibits stronger adaptability due to its
ability to unify the image formats between the simulation and real environments.
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Table 5: Simlulation and real-world testing results of different TS-VAT algorithm

Environment Transfer Method Laps ALgq  Oaps Osta  Success Rate
Image Augmentation 0.168m 0.075m 2.312° 1.508° 100%
Image Segmentation 0.162m 0.072m 1.219° 1.269° 100%
Image Augmentation 0.249m 0.128m 8.594° 11.541° 40%
Image Segmentation 0.146m 0.053m 5.183° 4.936° 70%

Simulation

Real World

5 CONCLUSIONS

In this paper, we propose TS-VAT, a teacher-student framework-based visual ac-
tive tracking algorithm. By using privileged information and the teacher-student
framework, we significantly reduce VRAM and RAM consumption and greatly
enhance training efficiency. Through the incorporation of image segmentation
and data augmentation, we improve the model’s robustness, enabling its ap-
plication in real-world environments. Experimental results show that TS-VAT
achieves superior real-world tracking performance while using fewer computa-
tional resources and training time. Therefore, our research provides a valuable
reference for future studies aiming to improve the training efficiency of deep
reinforcement learning-based visual active tracking algorithms.

Acknowledgments. The author wishes to express his sincere thanks to Prof.
Chen Chen and Mr. Nengwei Xu at the Beijing Institute of Technology for their
invaluable and generous support.
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