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Abstract. This study proposes a state of health (SOH) estimation method for the 

lithium-ion batteries based on a Large Language Model (LLM) and BiLSTM 

model, aiming to capture the complex dynamic characteristics during the perfor-

mance degradation process of lithium batteries through deep learning models. 

First, the charge-discharge data of lithium batteries is pr-processed, including 

data cleaning and normalization, to ensure the effectiveness of model inputs. 

Next, cross-attention is employed to reconstruct the charge-discharge data into 

text format, aligning data modalities with text modalities. Text prompts for this 

task are then input into the LLM model, with tokenization and encoding per-

formed to obtain input encodings. Subsequently, these input encodings and the 

cross-attention reconstructed features are jointly fed into the LLM model for fea-

ture extraction. Finally, the features extracted by the LLM model, along with the 

charge-discharge data of the lithium batteries, are input into the BiLSTM model 

for SOH prediction. To validate the model's effectiveness, various experiments 

were conducted using a historical dataset of cyclic aging from commercial 21700 

lithium-ion batteries (LG M50T). 

Keywords: State of Health (SOH), Lithium-ion battery,Large Language 

Model, Attention Mechanism 

1 Introduction 

With the intensification of global climate change and environmental pollution issues, 

the sustainable development of the environment and resources has become a central 

theme in the efforts of countries worldwide to achieve carbon neutrality and carbon 

emission policies. In September 2020, China committed to achieving peak carbon emis-

sions by 2030 and carbon neutrality by 2060[1], This ambitious target will further drive 

the development and utilization of renewable energy. Lithium batteries, as an efficient 

energy storage device, possess advantages such as compact size, long cycle life, low 

self-discharge rate, and environmental friendliness[2], and have been widely applied in 

electric vehicles and renewable energy storage. However, under the influence of pro-

longed cycling, high temperatures, and other factors, the capacity of lithium batteries 

tends to decline, leading to aging. Battery aging can result in performance degradation, 
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and if the batteries are not replaced in time before reaching the failure threshold, unex-

pected incidents such as overheating, short circuits, or even fires and explosions may 

occur. This can cause system malfunctions, prevent normal operation, and pose serious 

safety hazards[3]. Therefore, effective monitoring and management of lithium battery 

lifespan are crucial for ensuring battery safety, significantly impacting the safety and 

operational efficiency of electric vehicles and energy storage systems. 

The State of Health (SOH) is one of the critical metrics for determining the lifespan 

of lithium batteries, with estimation methods mainly divided into two categories: 

model-based methods and data-driven methods[4]. However, equivalent circuit models 

cannot capture all the physical and chemical processes within the battery, limiting their 

accuracy under different conditions and failing to accurately describe the highly non-

linear behavior exhibited by lithium batteries. Electrochemical models, while based on 

the internal physical and chemical processes of the battery, typically involve complex 

partial differential equations, requiring substantial computational resources and time to 

solve, thus presenting a very high computational complexity. 

Compared to the aforementioned methods, deep learning, as a data-driven approach, 

can discover the complex nonlinear relationships within lithium batteries by learning 

from extensive historical data and training multilayer neural networks for high-level 

nonlinear fitting[5]. A novel prediction method that combines the attention mechanism 

(AM) is introduced in [6], building on the LSTM approach. By applying a moving av-

erage filter to reduce noise and using AM to enhance the weight allocation of important 

information in the LSTM hidden layer for battery capacity data under different datasets 

and discharge rates, the accuracy of SOH prediction is significantly improved. An im-

proved Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) 

model that effectively captures multi-scale features and overcomes the gradient vanish-

ing problem in LSTM models is proposed in [7]. This is achieved by introducing feature 

selection and skip connection mechanisms, thereby significantly enhancing the estima-

tion accuracy of lithium battery SOH. However, from the above studies, it is evident 

that past research methods have primarily relied on unimodal historical data, without 

considering multimodal data fusion for SOH prediction. Leveraging the complemen-

tary nature of different modalities can enhance the accuracy of SOH prediction. Strate-

gies for time-series prediction using Large Language Models (LLMs) are explored in 

[8], effectively addressing the modal alignment issue between time-series data and nat-

ural language. However, this approach has limitations: it uses only a single past feature 

value to predict the future value of that feature, without considering the influence of 

other related features. Moreover, the model's predictions rely solely on text features 

extracted by the large model, considering only the text modality and not combining 

historical data with textual information, which may affect the comprehensiveness and 

accuracy of the predictions. To address these issues, this paper proposes a LLM-

BiLSTM model based on multimodal fusion, which improves the SOH prediction ac-

curacy of lithium batteries by aligning text and discharge data with multimodal features 

and processing the aligned multimodal data using the LLM model. 
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2 Proposed Method 

2.1 LLM-BiLSTM Model Structure 

The charge-discharge process of lithium-ion batteries is highly complex, and the data 

features obtained from charge-discharge experiments are insufficient to fully charac-

terize this process[9].To address the above issue, this paper proposes an LLM-

BiLSTM-based SOH prediction model for lithium batteries. This approach comprehen-

sively considers both text and data features, leveraging their complementary infor-

mation, and incorporates task-specific textual prompts into the LLM, thereby enhanc-

ing prediction accuracy. The structure of the LLM-BiLSTM model is illustrated in Fig-

ure 1. 

 

Fig. 1.LLM-BiLSTM MODEL Structure 
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The LLM-BiLSTM model is primarily composed of four parts: the Embedder Mod-

ule of the Pre-trained LLM, the Multi-head Cross-attention Module, the Body Module 

of the Pre-trained LLM, and the BiLSTM. The Embedder module of the pre-trained 

LLM encodes the continuous task text prompt sequence into tokens

1 2 3( , , ,..., )T

tk tk tk tk tkhX x x x x= , let 1 D

tkix   denote the token embedding of the i-th unit 

in the task text prompt sequence, where D  epresents the dimension of the token, and h  

represents the total number of units into which the task text prompt sequence is divided. 

In the Multi-head Cross-attention Module, the linearly mapped pre-trained word em-

beddings and the feature encodings and position encodings of the lithium-ion battery's 

historical charge-discharge features
1 2 3( , , ,..., )T

LX x x x x=  undergo multimodal align-

ment through multi-head cross-attention. This results in the textual representation

1 2 3( , , ,..., )dk dk dk dk dkLX x x x x=  of the lithium-ion battery's historical charge-discharge 

features, where L D

ix   denotes the feature during the thi  charge-discharge, 

L D

dkix   denotes the textual encoding feature during the thi  charge-discharge. In 

Body Module of Pre-trained LLM，In the Body Module of the Pre-trained LLM, the 

pre-trained LLM is used to extract features from tkX and dkX . Finally, the features ex-

tracted by the LLM, along with the historical charge-discharge data X  of the lithium-

ion battery, are used as inputs to the BiLSTM model to predict the SOH value of the 

lithium-ion battery for the next cycle.  

2.2 Embedder Module of Pre-trained LLM 

In this study, the LLM model selected is the Qwen2-0.5B model, a large language 

model based on the Transformer architecture. It incorporates advanced technologies 

such as the SwiGLU activation function, biased Q, K, V attention mechanisms, and 

grouped query attention. To adapt to the task of predicting the SOH of lithium-ion bat-

teries, task-specific textual prompts must be provided to the LLM. The textual prompt 

content is illustrated in Figure 2. 

[BEGIN Task Description]

***

[ role : system , content ]: You are an expert in the battery field 

specializing in battery life prediction and battery health prediction.

***

[ role : user , content ]:Predicting a specific value of S0H for the 

battery's future <T> discharges based on historical data from the 

battery's previous <H> charge/discharge cycles.

***

[ role : user , content ]:Accurately predicts the S0H value for the 

next <T> discharges of the battery.

[END Task Description]
 

Fig. 2. Task Prompt example 

The Embedder Module of the Pre-trained LLM, as depicted in the corresponding 

module of Figure 1, first employs tokenization to split the task-specific textual prompts 
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into discrete units such as words, phrases, or subwords. Subsequently, the Token Em-

bedder converts these segmented units into real-number vectors, thus providing the 

model with learnable inputs. The formula for the task-specific textual prompts is as 

follows: 

 ( ))_ ( ttk extTokeniX za XEmb T tion=  (2.1) 

where textX  represents the task-specific textual prompts, (.)Tokenization  denotes the 

tokenizer of the large model, )_ (.Emb T  stands for the Token Embedder of the Pre-

trained LLM. 

In addition to providing task-specific textual prompts to the LLM, this study also 

supplies the LLM with text-encoded information of historical charge-discharge data 

from lithium-ion batteries. This additional data further enhances the accuracy of the 

SOH prediction for lithium-ion batteries. 

2.3 multi-head cross-attention Module 

To achieve multimodal alignment and enable the LLM to comprehend and extract 

features from the historical charge-discharge data of lithium-ion batteries, this study 

first employs multi-head cross-attention to transform the historical charge-discharge 

data into Pre-trained Word Embeddings, and then use multi-head cross-attention to per-

form feature reconstruction on weY  based on the correlation between the data features

X  during historical charge-discharge of lithium-ion batteries and the Pre-trained Word 

Embedding weY , achieving modal alignment between data and text. The calculation 

formula for multi-head cross-attention is as follows: 

 

( )

( )

( )

we

we

q linear X

k linear Y

v linear Y

=


=
 =

 (2.2) 

 ( , , ) max( )

i

T

i i

i i i i i i

m

q k
head Attention Q K V Soft v

d
= =  (2.3) 

where q  represents the vectors obtained from the historical discharge data of lithium-

ion batteries after linear transformation. k  and v  are the vectors derived from the Pre-

trained Word Embedding weY  through different linear transformations. ,i iq k and iv  are 

the thi  segments of ,q k and after segmentation, respectively. 
imd represents the dimen-

sion of the thi  segment vector, and ihead represents the vector obtained from the cross-

attention calculation of the thi head. The formula for concatenating the vectors obtained 

from each head's cross-attention calculation is as follows: 

 1 2 8( , ,...... )dkX Concat head head head=  (2.4) 

where dkX  represents the text encoding of the historical charge-discharge data of lith-

ium-ion batteries obtained after the multi-head cross-attention module. 

In the multi-head cross-attention module, the historical charge-discharge data of lith-

ium-ion batteries underwent multimodal alignment and transformation, providing 
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learnable inputs for the LLM model. Subsequently, the Body Module of the Pre-trained 

LLM was employed to extract features from the aligned historical charge-discharge 

data. 

2.4 Body Module of Pre-trained LLM 

The Qwen2-0.5B LLM model selected in this study is a large language model based 

on the Transformer architecture. The Body Module of the Pre-trained LLM takes as 

input the task-specific text prompt encoding tkX  and the historical charge-discharge 

data of lithium-ion battery charge-discharge text encoding ( , , )Atten Q K V ，By utiliz-

ing the Pre-trained LLM, the model can better capture the intricate features and corre-

lations in the lithium-ion battery charge-discharge process, including the subtle inter-

actions among various variables such as voltage, current, and temperature. This en-

hances the accuracy and robustness of the prediction model. The formula for Body 

Module of Pre-trained LLM is as follows: 

 ( , ( , , ))text tkY LLM X Atten Q K V=  (2.5) 

where (.)LLM  represents the algorithm of the Body Module of the Pre-trained LLM, 

textY  denotes the features of the historical charge-discharge data of lithium-ion batteries 

extracted by the LLM.  

2.5 BiLSTM Module 

To enhance the accuracy of predicting the SOH values of lithium-ion batteries, this 

study employs both text features textY  and data features X  as inputs to the BiLSTM 

model for predicting the future SOH values. The BiLSTM model, a variant of the re-

current neural network (RNN), overcomes the issue of gradient explosion present in 

traditional RNNs. By combining two unidirectional LSTM networks, the BiLSTM 

model simultaneously processes the forward and backward information of a sequence, 

effectively capturing long-distance dependencies within the sequence[10]. The struc-

ture of the BiLSTM neural network is illustrated in Figure 4, and the computation for-

mula for each unidirectional LSTM network in BiLSTM is as follows:  

 

 ( )

 ( )

 ( )

 ( )

( )

1

1

1 ,

1

1

( , )

,

,

tanh ,

,

tanh

text

t f t t f

t j t t j

t c t t i c

tt t t t

t o t t t

t t t

U Concat X Y

f sigmoid W U h b

I gigmoid W h U b

C W h U b

C f C I C

O sigmoid W h x b

h O C

−

−

−

−

−

=


= +


= +


= +


= +


= +
 =


 (2.6) 
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Fig. 4. Structure of BiLSTM 

where U  represents the new features obtained by combining the text features textY  and 

the data features X , tU  is the input value at time step t ,  tf constitutes the output of 

the forget gate at time step t ; tI  and 
tC constitute the output of the input gate at time 

step t ; tO  and th  constitute the output of the output gate at time step t ; tC  and 1tC −

represent the current and previous cell states, respectively. fW 、 jW 、 cW 、 oW de-

note the weight matrices corresponding to the forget gate, input gate, current cell state, 

and output gate, respectively, while fb 、 jb 、 cb  and tb represent the respective bias 

vectors. 

Ultimately, the hidden layer outputs of the two unidirectional LSTM networks are 

passed through a Fully Connected Neural Network (FCNN) to predict the future SOH 

values of the lithium-ion battery during charge and discharge cycles. The formula is as 

follows:  

 
_

( , )text

out pre

K Concat Y X

Y WK b

=


= +
 (2.7) 

where K  represents the new features obtained by combining the text features textY  and 

data features. W and b  denote the weights and biases, respectively. 
_out preY  repre-

sents the predicted SOH value of the lithium-ion battery during charge and discharge 

cycles. 

2.6 State of health estimation algorithm based on LLM-BiLSTM model 

The proposed LLM-BiLSTM model employs cross-attention for multimodal align-

ment, transforming the charge and discharge data of lithium batteries into text encod-

ing. To enhance the LLM's understanding of the task objective, task-specific textual 

prompts are input into the LLM and subsequently tokenized and encoded. The Body 
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Module of the Pre-trained LLM is then utilized for text feature extraction. Finally, con-

sidering both the text features extracted by the Body Module and the charge-discharge 

data features, the BiLSTM predicts the SOH of the lithium batteries. The training and 

testing processes of the LLM-BiLSTM model are illustrated in Table 1. 

Table 1. LLM-BiLSTM modeling algorithm 

Algorithm: the training algorithm for the LLM-BiLSTM model 

Input: The text task description textX , the historical charge-discharge features of the 

lithium-ion battery 1 2 3( , , ,..., )T

LX x x x x= and SOH values 1 2 3( , , ,..., )T

out LY y y y y=  

Output: The SOH value for the next charge-discharge cycle of the lithium-ion bat-

tery 

Parameters: Maximum number of iterations :epoch; Training batch size :B; Learning rate: lr. 

Training process： 

1：Random initialization: randomly initialize the weight parameter matrix and bias of the 

LLM-BiLSTM model 𝜃𝑤and 𝜃𝑏 . 

2：Packed datasets: making small batches 
1

B

b b
X

=
 and  _ 1

B

out b b
Y

=
. 

3：repeat 

4：  for b=1 to B do 

5：  Input 𝑋𝑏 into the LLM-BiLSTM model to obtain the SOH prediction _out preY ，Then in-

put _out bY and _out preY  into the loss function to get the loss. 

6：  Inverse update  𝜃𝑤 and 𝜃𝑏   by minimizing the loss function value.  

7：  end for 

8：until reach maximum number of iterations epoch 

Testing process： 

9：for b=1 to B do 

10：Input 𝑡𝑒𝑠𝑡𝑋𝑏 and 𝑡𝑒𝑠𝑡𝑍𝑏 into the LLM-BiLSTM model, obtain the SOH prediction

_out preY . 

3 Experimental Simulation Result and Analysis 

The dataset used in this study is derived from a foreign research laboratory and in-

volves the cyclic aging of commercial 21700 cylindrical cells (LG M50T, LG 

GBM50T2170) under three different temperatures and four different SOC levels

(0% 30%−  , 70% 85%− , 85% 100%− , 0% 100%)− [11]. The experimental condi-

tions chosen for this study involve cyclic aging within a specified SOC range, as de-

tailed in Table 2. 

Initially, the battery activation is performed by charging at a constant current of 0.3C 

until the voltage reaches 4.2V, followed by constant voltage charging at 4.2V until the 

current drops below 0.01C, and then resting until the battery capacity is 250mAh. After 

meeting the cyclic experiment requirements, the battery undergoes 77 continuous 



State of health estimation of lithium-ion batteries Based on LLM-BiLSTM model 9 

charge-discharge cycles before being rested. This procedure is repeat-ed after a period 

to acquire the charge-discharge data features of the selected lithium batteries.  

Table 2. Lithium-Ion Battery Cyclic Aging Experimental Procedure Table 

Step Control Type Control Value Primary Limits 

1 CC charge 0.3C 4.2cellE V=  

2 CV charge 4.2V /100I C  

3 Rest Rest at OCV 4time h=  

4 CC discharge 1C 2.5cellE V=  

5 CC charge 0.3C 4.2cellE V=  

6 CV charge 4.2V /100I C  

7 Loop to step N/A 77times 

3.1 Data preprocessing 

Data normalization is a crucial step in data preprocessing, aiming to convert data 

from different ranges into a unified standard range. This process eliminates the differ-

ences in dimensions and value ranges among different features, ensuring comparability 

and preventing any single feature from disproportionately influencing the model train-

ing. It also helps accelerate the convergence of algorithms and enhances model stability. 

Given that factors such as battery voltage, current, temperature, capacity, and cycle 

count have different magnitudes and units, it is essential to standardize these data when 

estimating battery health status. In this study, these factors are normalized to fall within 

the range of 0 to 1. 

The method for data normalization is as follows: 

 min

max min

N

x x
X

x x

−
=

−
 (3.1) 

where x represents the original input data, minx  is the minimum value of the original 

input data feature, maxx  is the maximum value of the original input data feature, NX  is 

the normalized data. 

Additionally, large models based on the Transformer architecture process token se-

quences in parallel rather than sequentially. This parallel processing approach treats all 

tokens equally, which can prevent the model from capturing the temporal information 

of the input sequence. To address this issue, this method introduces positional encoding 

to encode both absolute and relative positions of the input sequence. This encoding 

approach provides a unique positional encoding for each time step and establishes a 

bounded encoding range. 
The absolute positions in the positional encoding sequence are represented using 

sine and cosine functions. These functions' products provide the relative positions. The 

vectors for each positional encoding alternate between sin  and cos  values, as follows: 
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,2 2

,2 1 2

sin

10000

cos

10000

l

pos i i

d

pos i i

d

pos
PE

pos
PE +

  
  =
   
  


 
  =
   
 

mode

model

 (3.2) 

where 
pos

 represents the position index within the input sequence. Each element in 

the positional encoding vector is indexed by i , and the dimension of the positional 

encoding vector is denoted by dmodel . 

3.2 Results and Discussion 

This study utilizes metrics such as Mean Absolute Error (MAE), Mean Squared Er-

ror (MSE), and the Coefficient of Determination(R2) to evaluate the model's perfor-

mance[12]. The calculation methods for these metrics are as follows: 

 
1

1 n

ii

i

MAE y y
n =

= −  (3.3) 

 
2

1

1
( )

n

ii

i

MSE y y
n =

= −  (3.4) 

 

2

2 1

2

1

( )

1

( )

n

ii

i

n

ii

i

y y

R

y y

=

=

−

= −

−




 (3.5) 

where n  is the number of prediction samples, iy  represents the actual SOH values, and 

iy  denotes the predicted SOH values. 

To validate the effectiveness of the proposed method, this study employs the afore-

mentioned three key statistical metrics: Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and Coefficient of Determination ( 2R ). Using these evaluation metrics, 

we compared the performance of the proposed LLM-BiLSTM model against the basic 

Bidirectional Long Short-Term Memory (BiLSTM) model and the GRU model. Table 

4 presents the three models along with their respective evaluation metrics. As observed 

in the table, the LLM-BiLSTM model demonstrates superior accuracy and computa-

tional efficiency compared to the BiLSTM and GRU models. Specifically, the LLM-

BiLSTM model achieves the lowest MAE and MSE values, 0.003307 and 0.004201 

respectively , and the highest 2R  value of 0.9917, indicating a better prediction perfor-

mance than the other models. 
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Table 4. Comparison of several models' prediction mistakes 

Model MAE MSE 2R  

LLM-BiLSTM 0.003307 0.004201 0.9917 

GRU 0.005215 0.006131 0.9819 

BiLSTM 0.007093 0.008603 0.9726 

 

 

Fig. 5. Lithium-ion battery charge/discharge SOH predictions 

The one-step prediction results for battery health status are shown in Figure 5. The 

results indicate that the predicted values of the LLM-BiLSTM model are closest to the 

actual values, while the BiLSTM model shows the poorest predictive performance. The 

superior performance of the LLM-BiLSTM model can be attributed to the use of a large 

model and multimodal information. Large models, when properly regularized and pre-

trained, generally exhibit better generalization capabilities when dealing with diverse 

types and conditions of battery data. Moreover, by integrating multimodal information, 

the LLM-BiLSTM model can reduce the uncertainty and errors associated with a single 

data source, thereby more effectively capturing the complex dynamic characteristics of 

lithium battery performance degradation. Consequently, the LLM-BiLSTM model pro-

vides more accurate predictions compared to other models. 

4 Conclusion 

This paper proposes a multimodal fusion-based LLM-BiLSTM model for SOH es-

timation of lithium batteries. First, a cross-attention mechanism is employed to recon-

struct the charge-discharge data into text form, aligning the data and text modalities to 

provide a more comprehensive and accurate information representation. Tokenization 

and encoding are then used to extract features. The pre-trained LLM model processes 

the input encodings and the features reconstructed through cross-attention. Finally, the 
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features extracted by the LLM model, along with the charge-discharge data of the lith-

ium batteries, are input into the BiLSTM for SOH prediction. This study utilizes cyclic 

aging data from Commercial 21700 cylindrical cells. Under the same conditions, the 

proposed model outperforms the BiLSTM and GRU models in prediction accuracy.     

The proposed model possesses robust nonlinear feature extraction capabilities, ca-

pable of capturing hidden patterns and trends within complex charge-discharge curves, 

significantly improving the accuracy and robustness of SOH prediction for lithium bat-

teries. Future research could focus on reducing computational complexity and more 

accurately predicting the initial SOH values after each rest period, thereby enhancing 

the safety and reliability of energy storage systems. 
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