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Abstract. Vehicle motion prediction is of great significance in human-
machine shared driving, as it is a basis for the virtual driver to make
suitable driving strategies so as to better assist the human driver or
even complete its own autonomous driving. While recent studies have
achieved good results by applying an intention prediction module into the
multi-modal trajectory generation strategy, they mostly give supervision
between intention proposals and final predicted points with insufficient
alignment method. This leads to a relatively low accuracy of the vehicle
motion prediction. To tackle this challenge, we propose a graph-based
model with mixture of experts (MOE) based intention prediction module,
introducing an efficient scenario-based intention prediction mechanism to
improve the performance of intention prediction task. Several testing was
conducted on the Argoverse motion forecasting dataset, which showed
that our model excels in predicting trajectories for multiple agents. And
the ablation experiments have verified the efficency of our method.

Keywords: Motion Forecasting - Deep Learning - Graph Neural Net-
works

1 INTRODUCTION

In the context of human-machine shared driving, the virtual driver needs to
provide prescriptions to the human driver as an intelligent assistant, or even
performs self-driving when the human take over is absent. Its objective is to make
correct as well as human-like strategies in an uncertain and dynamic environment
so that the vehicle can successfully reach the designated waypoint. Apart from
the intrinsic cognitive characteristics such as the personality and driving style
learning from the human driver[1][2], the motion prediction from surrounded
vehicles in a particular traffic scenario is another vital aspect for virtual driver
to select a suitable action. In such a task, the virtual driver needs to deal with the



temporal and spatial interactions, the impact of traffic signs, and the high-quality
encoding of the historical motion information from different traffic participants,
so as to accurately predict their possible future motions.

One of the tasks of virtual driver is to assist with driving and reduce the
cognitive load on human drivers. Trajectory prediction can help anticipate the
motion of surrounding vehicles, enabling intelligent decision-making for driving
strategies and reducing the frequency and intensity of cognitive decision-making
by human drivers. For autonomous driving systems, accurately predicting the
movement of surrounding traffic participants is an important task, which is of
great significance for guiding future safe driving behavior. This task causes com-
plexity and has many challenges. It is necessary to deal with the time and space
interaction of different types of traffic participants, consider the impact of traffic
markers and traffic participants, and take into account the high-quality encoding
of the historical motion information of traffic participants, so as to accurately
predict the possible future motion of traffic participants and guide the automatic
driving system to make safety decisions.

Basically, current learning-based methods for vehicle motion prediction can
be roughly categorized into two types. One type of work applies many achieve-
ments in the field of computer vision. The traffic scene at each moment is ren-
dered in the form of a bird eye view[3], and the CNN [4] is used to process.
However, the rendered results lose a lot of original information. In order to en-
sure accuracy, it also takes up a lot of running space.

Due to high demand for computing and storage resources of visual methods.
The other type of work mainly establishes various interactive relationships in the
traffic environment in the form of graphs. Through the GNN [5] to process the
abstract graph data, the decoder decodes the representation of the environment
learned by the model, and obtains the prediction of the future trajectory of the
vehicle. Some frameworks, such as VAE[6][7][8], GANI9]|[10] widely applied in
different interpolation and prediction tasks can also improve the performance in
this task. In addition, in order to obtain more accurate prediction results, some
works applied proposal module[11][12], which decouples the complex task into a
target point prediction and trajectory interpolation task.

Our contributions are as follows:

— We present one graph neural networks model successfully capture the com-
plex interactions of the traffic participants. To the best of our knowledge,
we are the first to utilize the mixture of expert module to facilitate the effi-
ciency of intention prediction task, enhancing the performance of the motion
forecasting model.

— We employ the Mixture of Experts approach to self-supervised learning of
category-specific features under various traffic scenarios. Given the embed-
ded representation of a scenario, the routing network within MOE directs
samples to distinct expert networks for processing, based on the learned
category-specific features.

— Several ablation experiments were conducted on the argoverse dataset, which
have demonstrated the efficiency of our approach.



2 RELATED WORK

2.1 Latent Representation Sampling

There are two main approaches to address this problem

Rasterized Scene using CNN[4] The rasterized scene approach involves cre-
ating an image-like representation of the environment, where dynamic agents are
encoded as pixels or channels in an image. This representation allows for the use
of CNN, which are adept at handling spatial data and have achieved remark-
able success in various computer vision tasks. The input to the CNN consists of
the rasterized scene, and the output is the predicted future trajectories of the
agents. This approach has shown promising results in motion forecasting tasks,
particularly in the context of autonomous driving.

Graph-based Approach using GNN|[5] The graph-based approach|13|[14][15][16]
models the interactions between dynamic agents using a graph structure. Each
agent is represented as a node in the graph, and the edges between nodes cap-
ture the relationships between agents, such as their spatial proximity or relative
movement. GNN are then used to process this graph-structured data, enabling

the model to learn complex interactions and dependencies between agents. The
input to the GNN is the graph representation of the scene, and the output is
the predicted future trajectories of the agents. This approach has shown strong
performance in various motion forecasting applications.

2.2 Intention Prediction

Intention prediction[11][12][17] plays a crucial role in motion forecasting tasks,
especially for autonomous driving systems. Integrating intention prediction into
motion forecasting models can significantly improve their performance, as it
enables the models to capture the underlying intentions of agents.

Various approaches have been proposed for intention prediction. There are
many methods to generate the intention point[11][12], which can be generated
by decoding the environmental variables directly through the neural network,
or by generating a set of GMM][17] through the neural network to represent
the intention point. In addition, there are also works to generate the intention
point by selecting the points near the road traffic line. The methods mentioned
above have all, through various forms of expression, encoded intention for future
automotive trajectories. However, these methods have not been able to learn
potential intention in a self-supervised manner, requiring to a certain extent
the supervision of manually annotated labels. In this context, we introduce a
self-supervised learning mechanism for scenario intention based on a mixture
of expert network. This mechanism is capable of autonomously optimizing the
encoding of future automotive trajectory intention according to the task at hand,
yielding favorable results.



2.3 Multi-Modal Prediction

Multi-modal prediction is an essential aspect of motion forecasting tasks, par-
ticularly for autonomous driving systems, where the ability to predict multiple
plausible futures for other agents in the environment is crucial for robust and
safe decision-making. The goal of multi-modal prediction is to estimate a diverse
set of potential trajectories that agents might follow, considering the inherent
uncertainty and ambiguity in their behavior and the surrounding context.

In motion forecasting tasks, multi-modal prediction aims to capture the var-
ious possible outcomes that can arise from agents’ interactions with the environ-
ment and other agents. To achieve this, several approaches have been proposed,
leveraging techniques such as GAN [9]{10], and VAE [6][8]. These methods allow
models to learn a distribution over future trajectories, enabling them to generate
multiple plausible predictions [10][18][19][20].

2.4 Mixture of Experts

The Mixed Expert Networks are capable of allocating different types of samples
to suitable expert networks for processing through a routing network, enabling
the model to avoid compressing the knowledge of various sample types into a
single network during the learning process. By distributing the processing of
knowledge pertaining to different sample types, the model’s performance can be
enhanced more efficiently.

This network paradigm has been extensively applied in fields such as Nat-
ural Language Processing and Computer Vision, including works like Switch
Transformer|[21] and Gshard[22], where Mixed Expert Networks have demon-
strated significant sparse learning effects. These effects allow the model to achieve
superior performance under the premise of consistent operational parameters.
Switch-Nerf[23] utilizes Mixed Expert Networks, enabling different experts to
learn and model various types of scenes within large-scale scene reconstruction
tasks, yielding impressive results. To our current knowledge, no work has con-
sidered the Mixed Expert Networks approach in the motion prediction domain.
We have designed a motion prediction Mixed Expert Network capable of dis-
tributed processing of different traffic scene types. By specifically addressing the
varying traffic scenarios in which the objects to be predicted are situated, we
have developed a more efficient motion prediction model.

3 METHOD

Briefly, the proposed model, as shown in the Fig.1, uses graph neural network
to encode geometric information of traffic participant tracks and environmental
information, then obtains intention proposals through interactive coding module
and scenario intention prediction module, and then obtains accurate future tra-
jectory prediction by trajectory decoder module. Finally, the alignment method
is applied to alleviate the problem mentioned above.



FFN Module

Temporal Features
Attention Module |_ ——————— 1
- —_ Expertl M Expert2 | Expert3 Ml Expert4

SeTect and Make -1
Trajectory Prediction

Muiltiple Experts Networks
Agent & Lane
Features

|
' -
! Topk
Topk Scenario Predictor
b Scenario Intention Prediction Module ey

Temporal Fusion

Agent Features

FFN Module N
Attention

Module

Attention Module

A2A Fusion

Trajectory Embedding

MLP Encoder

Trajectory Data

Anntion . .
Module . .
C Il

Trajectory

Fig. 1. Model Framework Description

3.1 Problem Formulation

Consider a set of N vehicles in a scene, indexed by i € {1,2,...,N}. Let
xgt) € R? denote the 2D position of vehicle i at time ¢. The trajectory of vehicle
i up to time ¢t is given by Xi(lzt) = {xgl), $l(.2), e ,mgt)}. The goal of vehicle mo-
tion forecasting is to predict the future trajectory of each vehicle for a horizon
of T time steps, i.e., YZ-(HLHT) = {xz(-tﬂ),xl(-tﬁ), ... ,acgtJrT)}, based on their
historical trajectories and possibly other contextual information.

3.2 Geometric Representation Encoder

Motion forecasting tasks involve predicting future trajectories of vehicles given
their past positions and map information. In this approach, we encode both map
information and trajectory information in a graph format, leveraging Transform-
ers for prediction. The map information and trajectory information are encoded
by MLPs respectively.

Vehicle Trajectories as Nodes Given a vehicle trajectory Traj, consisting
of a sequence of (x,y) coordinates for time steps ¢t € {1,2,...,T}:

Traj; = {(zi1, yi1), (Ti2, Yi2), - - -, (@7, yir) } (1)




we can represent each trajectory as a node in the graph. The node features
Fr.qj, can include the past positions, angles, and other descriptors of the vehicle
state, where attr; represents additional attributes for vehicle i:

Fr,qj, = Concat{(z:1, yi1, attrsr), . .., (xir, yir, attrir) } (2)

Map Information as Nodes Map information M consists of various types of
data, such as lane centerlines, road boundaries, and intersection regions. We can
represent each map element as a node in the graph.

For example, if we consider lane centerlines, let L; be a lane centerline con-
sisting of a sequence of (x,y) coordinates:

L = {(zj1,y51): (%52, Yj2), - (TN, YN ) } (3)

where N is the number of points in the centerline.
The node features F,; can include the positions of the centerline points, and
other lane descriptors:

FLj = C’oncat{(xﬂ, Yil,s attrﬂ), ceay (xiT, YiT, attriT)} (4)

attr; represents additional attributes for lane j.

The encoding process involves passing the trajectory graph and the map
graph, consisting of their respective node features Fr,,; and F through sepa-
rate MLPs:

Hr = MLPT'raj (FTraj) (5)

H, = MLP.(F}) (6)

where Hrp,,; and Hp are the output hidden representations of the nodes in the
trajectory and map graph respectively.

3.3 Interaction Fusion Blocks

Transformer Architecture The Transformer [24] is an attention-based archi-
tecture designed for sequence-to-sequence tasks. It consists of an encoder and a
decoder, each composed of multiple identical layers. In our scenario, we focus on
the encoder part of the Transformer to learn interactions among map nodes and
trajectory nodes.

Each layer in the Transformer encoder consists of two main components: a
multi-head self-attention mechanism and a position-wise feed-forward network.
Additionally, there are residual connections around each of the two components,
followed by layer normalization.

Multi-Head Self-Attention The multi-head self-attention mechanism allows
the model to jointly attend to information from different representation sub-
spaces at different positions. Given a set of input vectors, the self-attention
mechanism computes an output vector for each input vector by taking a weighted



sum of all input vectors, where the weights are determined by the compatibil-
ity of each pair of input vectors. The multi-head self-attention is computed as
follows:

MultiHead(Q, K, V) = Concat(heady, . .., head )W© (7)

where @, K, and V are the query, key, and value matrices, respectively, and H
is the number of attention heads. Each head is computed as:

head; = Attention(QWS, KWK, v (8)

where W2, WX and W) are the linear projection matrices for the i-th head.

1 0 2

The attention function, Attention(Q, K, V'), is the scaled dot-product attention:

QK™
Vi,

Attention(Q, K, V) = softmaz( 4 9)

where dj; is the dimension of the key vectors.

Position-wise Feed-Forward Network The position-wise feed-forward net-
work consists of two linear transformations with a ReLU activation function in
between:

FFN(z) = max(0,xWq + b1)Wa + by (10)

where Wy, Ws, b1, and by are the learned weights and biases.

Encoding Process

Zr, = Transformer(Hy ¢, Hr ) (11)
Zyp = TemporalEncoder(Zry, Zr4) (12)
Z;, = Transformer(Zr,Hy) (13)
Zgiobar = Transformer(Zy,Zy) (14)

3.4 Scenario-based Intention Prediction Module

In this approach, we extend the previously described method with a mixture
of experts mechanism as a decoder module, implemented as MLPs and Router
Networks. These modules are applied after the global interaction learning stage
to generate scenario intention predictions and decode them into final trajectory
predictions.
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Fig. 2. Mixture of Expert based Scenario Intention Prediction Module

Scenario Intention Proposal Module in Mixture of Experts Mecha-
nism As demonstrated in Figure 2, the scenario intention proposal module
takes the global interaction output Zg.pq; as input and generates a set of can-
didate scenario proposals. Then the router network directs the samples towards
various expert networks can tackling different scenarios for processing based on
the generated scenario proposals. In actuality, the scenario intention proposal
module is characterized by two parameters, N and K, where N signifies the
total number of expert networks. This parameter, to a certain extent, represents
the sparsity of the network as well as the diversity of types that the network can
process. On the other hand, K denotes the number of expert networks selected
for sample processing after the routing network completes the allocation process
and determines the proposal degree for each expert network, thereby selecting
the top-ranked proposals:

Tprop = ROUtern,k(Zglobalv ZL) (15)

Decoder Module The decoder module is responsible for refining the trajec-
tory proposals generated by the target proposal module. It takes both the global
interaction output Zgiope and the lane representations Zr as input and pro-
duces the final trajectory predictions. We aspire to convey a novel perspective
wherein for each contextual embedding, a routing network selects several expert
networks for processing. This approach ultimately results in each expert network
acquiring relatively unique experiential characteristics. Such a method effectively
decouples tasks, enabling the intrinsic feature attributes of these tasks to be pro-
cessed in a categorized manner. Consequently, this significantly enhances model
performance:



Tpred = Experttopk(zglobalu ZL) (16)

3.5 Loss Functions

In this section, we describe the loss function for trajectory prediction in the
context of motion forecasting tasks. The loss function aims to minimize the
discrepancy between the predicted trajectories and the ground truth trajectories.

L= »Creg(l/Q) + »Ccls + »Cbalance (17)

Regression Loss The regression loss L,.y1 measures the distance between
the predicted trajectories and the ground truth trajectories. It is defined as
the average Euclidean distance between corresponding points in the predicted
and ground truth trajectories. Note that ¢ in L,.42 is the Laplace distribution
function, following [25]. The loss function mentioned below are both tested in
ablation experiments:

N T
1
£reg1(Tp'red7 N Z Z |ppred,i,t - pgt,i7t| (18>
=1 t=1

bi.) = log 2b [Pt 7 Poredsi]
i,t

(19)

N T
LregQ (Tp7 edy Z Z (6]

Classification Loss The classification loss L.;; measures the discrepancy be-
tween the predicted trajectory classes and the ground truth trajectory classes.
It is defined as the cross-entropy loss between the predicted class probabilities
and the ground truth class labels. The main purpose of this loss function is to
enhance the consistency between the highest-confidence trajectory predicted by
the model in multimodal forecasting and the ground truth. Through this ap-
proach, the aim is to ensure that among the various potential future trajectories
provided by the model, the one with the highest predicted confidence aligns more
closely with the actual observed trajectory:

N C
Z ZYQt,i,c log Ypred,i,c (20)

i=1 c=1

Z\H

»Ccls (Tpredv

Load Balance Loss In Lygance the m, is mean gates per expert, c./S is
the fraction of input routed to each expert. The objective of the load balance
loss is to ensure equitable distribution of sample volumes across various expert
networks, preventing scenarios where only a few expert networks are selected,
leading to a lack of training for others. This approach facilitates each expert



network in learning relatively unique features, thereby aiding in enhancing the
overall performance of the model:
Ce

['aance: e o 21
bal Meg (21)

4 EXPERIMENTAL EVALUATION

4.1 Datasets

The proposed method is evaluated on the Argoverse Motion Forecasting dataset|26],
which provides rich contextual information, including high-definition maps with
lane centerlines, as well as trajectories of multiple agents in the scene. Each tra-
jectory in the dataset consists of 2 seconds of historical data and 3 seconds of
future data, sampled at 10 Hz. The historical data is used to predict the future
trajectories of the agents. In addition to vehicle trajectories, the dataset also
provides high-definition maps with accurate lane centerline information, which
can be utilized for incorporating map context into prediction models.

The dataset is split into three subsets: a train set, a validation set, and a
test set. The train set consists of 205,942 sequences, the validation set contains
39,472 sequences, and the test set has 78,143 sequences. Each sequence represents
a unique scene, with multiple agent trajectories and associated map data. The
Argoverse Motion Forecasting benchmark evaluates the performance of vehicle
motion forecasting models using various evaluation metrics, such as Average
Displacement Error, Final Displacement Error and Miss Rate.

4.2 Metrics

In this section, we describe various evaluation metrics used for trajectory pre-
diction tasks: Average Displacement Error (ADE), Final Displacement Error
(FDE), Miss Rate (MR), minADEQK, minFDEQK, and MRQK.

4.3 Experiment Details

The model is trained with a batch size of 64 for 32 epochs. The learning rate
is initialized at le — 3. We use the Adam optimizer [27] with a weight decay
of 1le — 3 for regularization. The CosineAnnealing learning rate scheduler was
applied in training steps.

4.4 Results Analysis

The results obtained from the validation set and the ablation study conducted
on the validation set are presented in Table 1 and Table 2. A meticulous anal-
ysis of Table 1 reveals critical insights into the performance of our proposed
mixture of experts based scenario intention prediction mechanism. It is evident
that employing our proposed mechanism in motion prediction tasks significantly



Table 1. Results on the validation set of the Argoverse dataset

Model N |K|minADEQ6|minFDEQ6|minMRQ6
ours 1|1 0.693 1.040 0.102
ours 5|1 0.708 1.080 0.116
ours 10|11 0.713 1.110 0.121
ours 512 0.685 1.020 0.099
MultiLane[28§] 0.84 1.42 0.11
Luo et. al.[29] 1.05 2.06 -
TNT|[11] 0.72 1.29 0.09
LaneGCNJ13] 0.71 1.08 0.10
DenseTNT[12] 0.73 1.05 -

outperforms the models that listed in Table 1, regardless of the combination
of hyperparameters selection. Incorporating our mixture of experts based sce-
nario intention prediction mechanism into the training process leads to superior
performance across all official evaluation metrics on the Argoverse dataset.

The closer examination of the results shows that, for the official evaluation
metrics of the Argoverse dataset, the introduction of £,.42 alone yields promising
performance. In fact, by allocating a variance estimate for each position within
the trajectory prediction outcomes, the efficacy of the model has been substan-
tially enhanced. This methodology allows the model to avoid the compulsion to
approximate a point as necessitated in L,eq1, thus providing predictions with
a certain degree of uncertainty variance effectively mitigates issues associated
with overly rigid problem-solving approaches. By introducing a more softened
loss function, the robustness of the model is augmented, thereby improving the
overall performance of the model. Regarding the loss function £, it serves a su-
pervisory role in the learning of confidence in multimodal trajectory predictions,
evidencing that the application of this loss function can significantly enhance
model performance. On the other hand, Lysiance is capable of optimizing the
balance in sample allocation, ensuring that all networks within the multi-expert
framework are well-trained, thereby achieving the objective of self-supervised
construction of scene classification.

Table 2. Ablation Studies on the validation set

Lyeg1/2|Leis|Loatance mMinADEQ6|minFDEQ6|minMRQ6
VI Vv 0.732 1.080 0.111
2 | X| V 0.720 1.130 0.125
2 |V X 0.691 1.040 0.101
2 |V ]V 0.685 1.020 0.099

Regarding the hyperparameters N and K, it is observed that a relatively
superior model evaluation performance is predominantly concentrated around
a median value of N. Both an insufficient and an excessive number of expert



networks can lead to certain degrees of performance degradation. Moreover, an
overly high quantity of expert networks may result in an excessively sparse net-
work configuration, thereby adversely affecting model performance. As for the
parameter K, it is generally observed that selecting up to two expert networks
as proposals tends to demand significant resource allocation. It can be seen that
the involvement of more expert networks in the model inference process enables
the integration of a broader array of local key features.

5 CONCLUSIONS

In this work, we propose a method for performing scenario based intention pre-
diction of vehicle motion forecasting tasks. By encoding road topology informa-
tion, motion information of the ego vehicle and surrounding vehicles through
Graph Neural Networks, and conducting global interaction learning via Trans-
formers, we perform scenario based intention prediction to send different types
of traffic scenario embedding to the specific expert networks. We then integrate
the aforementioned information to predict multimodal trajectories, while simul-
taneously applying our proposed scenario based intention prediction methods.
Our approach achieves favorable results on the introduced evaluation metrics of
the argoverse dataset. The experimental results demonstrate that our proposed
mixture of expert based scenario intention prediction method has achieved its
design objectives, realizing improved model prediction performance.

In future work, we will further explore the application of mixture of expert
based scenario intention prediction mechanisms in motion forecasting tasks, and
investigate more effective model encoding structures to enhance the performance
of the model in motion forecasting tasks.
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