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Abstract. Compound directional drilling consists mainly of a combi-
nation of sliding and rotating modes. Incorrect switching between the
two modes can lead to large trajectory deviations. Therefore, this study
considers the switching of two modes as a classification problem and in-
vestigates the use of random forest to predict mode switching. Through
linear interpolation and feature importance analysis of drilling param-
eters, seven decision variables with high relevance to the problem were
extracted. The random forest model of switching decision between sliding
and rotating modes were established. Compared with other classification
models, random forest demonstrates significant superiority in solving the
classification problem of the two modes in compound directional drilling.

Keywords: random forest · sliding mode · rotating mode · compound direc-
tional drilling.

1 INTRODUCTION

Compound directional drilling technology plays an important role in resource
exploration, especially in coal bed methane and coal mining[1]. Its principle is
to use a rotating disc or top drive device in conjunction with downhole sliding
inclined drilling tools, to use sliding inclined drilling tools for directional sliding
mode in the directional inclined section, and to use drill strings and inclined
drilling tools to rotate at the bottom of the hole in a stable inclined section. Ac-
curate control of drill bit direction is crucial in directional drilling, as it directly
⋆ Corresponding author: Chengda Lu (luchengda@cug.edu.cn)
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affects drilling efficiency, cost, and final coal production. Sliding and rotating
are two key operations for controlling the direction of the drill bit during the
drilling process. The former uses high-pressure media to drive a screw motor at
the bottom of the hole to rotate the drill bit to cut and break rock, effectively
reducing torque loss, and achieving low drilling pressure, high torque, and high-
speed drilling. The latter transfers the large torque generated by the rotation of
the drilling rig through the drill string to the drill bit for rock fragmentation, but
there are problems such as large mechanical energy loss and complex force on the
drilling tool. By effectively utilizing alternating sliding and rotating modes of op-
eration, overall drilling performance is improved without compromising stability
and efficiency.

At present, research on compound directional drilling technology mainly fo-
cuses on drilling mechanism and on-site application, force analysis and numerical
simulation of screw motor combination, drilling trajectory control technology,
and drilling tool optimization[2]. Xu et al. introduced and analyzed the principle
and characteristics of compound drilling technology, and analysed the influence
of factors such as drilling pressure on the regulation of drilling trajectory in com-
pound directional drilling[3]. Zhong et al. proposed a novel wellbore trajectory
design in sliding mode to reduce total drilling time and improve economics[4]. In
sliding drilling process, the conventional tool face angle control is very labori-
ous and time-consuming. Wang et al. proposed a model-based optimized control
method to facilitate tool face angle setting thereby changing the tool face angle
in sliding mode[5]. Chu et al. proposed that the ratio of sliding and rotating
modes in drilling in compound directional drilling depends on the stacking rate
of the sliding drill and the rate of change in inclination and azimuth of the com-
posite, independent of the target zone parameters and well diameter fluctuation
rate[6]. In practice, it is difficult to grasp the timing of mode switching in com-
pound directional drilling, and there are no definite rules for the factors that
affect the timing. Therefore, switching decision method based on experience and
rules like the results aforementioned are no longer suitable for solving problems
the switching problem between two drilling modes.

Thus, this paper investigates a switching decision method based on random
forest between sliding and rotating modes. Through in-depth analysis and intel-
ligent processing of drilling parameters, classification models of four algorithms,
namely random forest[7], decision tree[8], neural network[9] and support vector
machine (SVM)[10], are trained. By comparing the accuracy of the four classifi-
cation models, random forest was chosen as the main algorithm studied in this
paper, which provides a new way to solve the trajectory prediction problem of
compound directional drilling.

2 Process Description and Characteristics Analysis

By studying the technology and characteristics of compound directional drilling,
it can be understood that the uncertainty of parameters and different operating
conditions have a significant impact on the switching decision problem.
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2.1 Process Description in Compound Directional Drilling

The key to the technology of compound directional drilling lies in the manual
control of the borehole trajectory, with a focus on the timing of transitioning
between the sliding and rotating modes during drilling operations. During the
sliding mode, manual real-time continuous control of the borehole trajectory
bending direction can be achieved by adjusting the tool face angle of the bottom
hole motor. During rotating mode, due to the continuous rotation of the bot-
tom hole motor tool face, manual control of the borehole trajectory cannot be
realized. However, by analyzing the lateral force of the bottom hole drilling tool
under compound drilling conditions, the deviation of the borehole trajectory can
be determined. Based on this deviation, the appropriate drilling method can be
selected, during drilling, efforts should be made to utilize the bending charac-
teristics of compound directional drilling for borehole trajectory control[11].

2.2 Characteristics Analysis

The drilling parameters generated during the actual directional drilling process
are diverse, excellent datasets require clear data and statistical analysis to ob-
tain. Possible sensor failures and operational errors may result in a large number
of missing and abnormal values. Reasonable interpolation, filling, and removal
should be carried out to ensure the integrity of the data. There may be a cer-
tain correlation between drilling parameters, and exploring their regularities can
streamline the dataset and reduce the generation time of the model.

The influence of complex geological formations and varying drilling conditions
makes it difficult to address switching decisions through rules and mechanisms[12].
Moreover, this approach is incompatible with the trend towards intelligent and
automated development. Although fuzzy comprehensive evaluation methods are
frequently utilized in switching decision during drilling processes, the outcomes
are often subject to the subjective judgments of decision-makers, lacking ob-
jectivity. As the number of evaluation factors increases and the fuzziness of
relationships complicates, the computational complexity of fuzzy comprehensive
evaluation methods escalates, leading to issues of high computational load and
time consumption. Additionally, these methods are highly sensitive to fuzzy in-
put information, demanding high-quality input data to avoid inaccuracies caused
by errors or uncertainties.

3 Frames for sliding and rotating modes switching

The flowchart of the switching decision between sliding and rotating modes in
compound directional drilling is shown in Fig. 1. Due to severe missing values
in the original dataset, linear interpolation method is used to fill in the missing
values in the original dataset. The importance assessment method is used to
select decision variables with high relevance for research, aiming to reduce the
dimensionality of the dataset and the complexity of the model. The new dataset
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is trained using the random forest algorithm to obtain the optimal prediction
model. The trained model is saved, and the model is loaded when new decision
variables are input. The accuracy function of the random forest is then utilized
to predict sliding or rotating mode. It is also crucial to choose the appropriate

Fig. 1: Flowchart of switching decision between sliding and rotating modes

dataset before model training to assess its impact on the model. By using linear
interpolation and importance assessment to preprocess the original dataset, an
excellent dataset that is more suitable for research can be obtained. The lin-
ear interpolation method will not change the distribution characteristics of the
original data, and can maintain the overall distribution shape of the data. This
helps to avoid data distortion or the introduction of noise. Doing an importance
assessment[13] of the dataset allows for the extraction of feature values that have
a large impact on the model’s performance, which can simplify the model and
improve its generalization. The idea of feature importance assessment in random
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forest is to calculate how much each feature contributes to each tree in the ran-
dom forest, take the average value, and finally compare the contribution between
the features.

Random forest is an ensemble learning method commonly used for classifi-
cation and regression tasks. It consists of multiple decision trees, each trained
independently and with randomness referenced in the growth process. During
the construction of each decision tree, bootstrap sampling is used to randomly
select training samples. Secondly, when each node splits the features, only a
part of the features selected at random is considered. These two types of ran-
domness ensure the diversity of each decision tree. When making classification
predictions, the random forest votes on the predictions of each decision tree, and
then selects the category with the most votes as the final prediction result. The
detailed process of random forest construction is shown in Fig. 2.

Fig. 2: Generation process of random forest

4 Case study

The data for this experiment comes from 15 sets of variables from 11 boreholes
in Sangshuping No.2 well. A dataset composed of variables is divided into two
parts: 70% training set and 30% testing set.

4.1 Data Preprocessing

When the original data set collected in the field is observed, the difference be-
tween adjacent data is very small. According to the data collected from Sang-
shuping No. 2 well, the data loss is very serious. In order to ensure the integrity
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of the data, the linear interpolation method is used to make up the missing val-
ues. From Fig. 3, the blue curve is a curve composed of the original data, and
the red points are newly inserted values using interpolation, which fills in the
white space between the data points to create a smooth curve or surface. This
can help reduce noise or oscillations in the chart and make trends in the data
clearer.

Fig. 3: Tool face angle after linear interpolation

In the feature importance assessment of this study, the out-of-pocket data
importance of a feature X, for each decision tree, select the corresponding out of
bag data to calculate the out-of-bag data error, and record b1; Noise interference
is randomly added to feature X of all samples of data out of bag outside the bag
(which can randomly change the value of samples at feature X) and the error of
data outside the bag is calculated again, which is denoted as b2. If there are n
trees in the forest, then the importance of the feature X(ci) is calculated by

Ci =
∑

(b2− b1)/n. (1)

Table 1 shows the importance of features based on random forest. It can be
seen from the figure that features such as azimuth Angle, azimuth deviation,
up and down displacement deviation and left and right displacement deviation
are of high importance. Selecting 7 features that have the greatest impact on
decision making to form a small sample dataset and reconstruct the decision
model based on random forest. The main purpose of selecting important feature
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values is to reduce the training time and the complexity of the model by reducing
the dimension of features on the premise of maintaining the correctness of the
decision.

Table 1: Importance of seven characteristics
Eigenvalue Significance

1 Tool face angle 0.5015

2 Azimuth deviation 0.6543

3 Inclination deviation 0.5401

4 Up and down displacement deviation 0.8064

5 Left and right displacement deviation 0.5412

6 Feed pressure (loaded) 0.5589

7 Stratigraphic description 0.6876

4.2 Accuracy of Classification Results

In the classification problems based on random forest, the common evaluation
method is confusion matrix, which is mainly used to compare the classification
results with the actual measured values, and the accuracy of the classification
results can be displayed in a confusion matrix. In the binary classification prob-
lem, accuracy in the confusion matrix is chosen as the index to evaluate the
model. The formula for calculating accuracy[13] is given by

Accuracy =
TP + TN

TP + FN + FP + TN
. (2)

It is assumed that the classification results in binary classification problems
have positive and negative classes. True Positive (TP) : Indicates the true class.
The true class of the sample is a positive class, and the result of model recognition
is also a positive class.False Negative (FN) : Indicates a false negative class. The
true class of the sample is a positive class, but the model recognizes it as a
negative class. False Positive (FP) : Indicates the false positive class. The true
class of the sample is a negative class, but the model recognizes it as a positive
class. True Negative (TN) : Indicates the true negative class. The true class of
the sample is a negative class, and the model recognizes it as such.

Since Random Forest randomly selects training subsets and testing subsets,
multiple experiments and cross-validation of the random forest model are usually
performed to obtain stable mean values. To increase the accuracy of the experi-
ments, the hyperparameters of the random forest are tuned to obtain the optimal
combination of hyperparameters as follows: The number of decision trees is 250,
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and the depth of the tree is 3. Following from Fig. 4, it can be seen that the
predicted values of the sliding and rotating modes based on the random forest
model are close to the results of the real classification values in the test set. It
can be concluded that the random forest algorithm proposed in this paper has
good performance in the switching between sliding and rotating modes. With
the confusion matrix in Table 2, using the accuracy formula, the prediction ac-
curacy is 96.30% in 30% of the testing set, in which the classification result of
the sliding mode is 97.00% correct, and the classification result of the rotating
mode is 95.60% correct.

According to Table 3, we can observe the accuracy of the classifiers obtained
after using the original data, the data after filling the missing values, and the
data after feature selection as the dataset for model training, respectively. From
the results, it is clear that all three steps have improved the accuracy of the
model.

Fig. 4: Performance of the random forest model

4.3 Comparison and Analysis with Machine Learning Methods

Decision tree, SVM, neural network and other algorithms are widely used and
representative in the field of machine learning and data mining, and are cur-
rently the mainstream algorithms in the field of prediction classification. Com-
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Table 2: Confusion matrix diagram of random forest classifier
Predict value Total

Sliding Rotating

True value Sliding 291 9 300

Rotating 11 239 250

Total 316 234 550

Table 3: Accuracy after data preprocessing
Accuracy Sliding Rotating

Original data 89.01% 90.16% 88.86%

Filling missing values setting 92.76% 96.33% 89.20%

Feature selection 97.00% 95.60% 96.30%

pared with random forest algorithm, the above algorithms have their own ad-
vantages and applicable scenarios. By comparing them with random forests, it
is possible to assess their strengths and weaknesses in processing complex data,
generalization ability, model interpretation, etc., to gain a more comprehensive
understanding of the performance and application value of these algorithms in
specific tasks.

Four different algorithms were used to form classification prediction models.
Table 4 shows the accuracy of the four different algorithms in predicting the
switching of sliding and rotating modes. By comparison, we can conclude that
the classification prediction results of random forests are the best.

Table 4: Performance comparison of random forest model with other models
Model name Sliding Rotating Total accuracy

Random forest 97.00% 95.60% 96.30%

Neural network 89.81% 91.15% 90.48%

Decision tree 90.75% 87.81% 89.28%

SVM 81.71% 76.54% 79.12%
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CONCLUSION

Based on the borehole data of Sangshuping No. 2 well, a classification prediction
model of sliding and rotating modes based on random forest is established. Ex-
periments show that the random forest algorithm is superior to other algorithms
such as SVM and decision tree in switching decision of sliding and rotating
modes. Random forest algorithm not only has a strong feature extraction ability
but also can effectively classify and predict data sets, which provides a reliable
method for sliding and rotating modes switch decisions. The future research
direction will focus on exploring the application of a more effective random for-
est model in the field of compound directional drilling to further improve the
accuracy and robustness of model prediction.
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