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Abstract. In this paper, the stability and Hopf bifurcation of a class
of fractional-order Hopfield neural networks with time delay and double
memristors are discussed. The local stability of the equilibrium point of
the system is discussed. Taking the time delay as the bifurcation param-
eter, the critical condition of Hopf bifurcation in the system is derived.
In order to improve the stability of the system, by adding a state feed-
back controller to the network system, the stability of the system and the
conditions for Hopf bifurcation are analyzed. The numerical simulation
shows that the state feedback controller improves the dynamic perfor-
mance of the system, the bifurcation point of the system is delayed, and
the system obtains a larger parameter stability range.

Keywords: Fractional order Hopfield neural networks · memristor· sta-
bility · bifurcation control

1 Introduction

Human brain is the most complex nonlinear dynamic system known at
present. In order to reveal the complex dynamic characteristics of the biological
nervous system, researchers designed neural networks by imitating the behavior
of biological neural networks to realize the reception [1], storage [2] and transmis-
sion of information [3]. In 1982, Hopfield proposed the famous Hopfield neural
network model based on energy function [4], which has been widely used in asso-
ciative memory, image processing, secure communication and other fields. From
the perspective of dynamics, Hopfield neural network has rich dynamic charac-
teristics, which has an important impact on the design and application of the
⋆ Supported by National Natural Science Foundation (NSFC) of China under Grant

72274233, 61472374.
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network. Due to the existence of special nonlinear neuron activation function in
Hopfield Neural Network (HNN), it is an important tool to simulate the complex
behavior of human brain [5].

Fractional calculus can describe physical phenomena more accurately [6]. As
a kind of nonlinear resistance element with memory function, memristor becomes
a natural non-volatile memory. Due to its high cost and technical complexity,
much of the research relies on models and simulations. Different types of memris-
tor models (such as cubic smooth [7] , quadratic smooth [8] , primary smooth [9]
, and hyperbolic tangent [10] memristor models) have different nonlinear dy-
namic behaviors, and their introduction into neural network systems leads to
richer dynamic characteristics, such as chaos and bifurcation phenomena.

Time delay is universal in neural networks. However, the introduction of time
delay often causes changes in system stability, such as bifurcation [11], periodic
oscillation [12], chaos [13] and so on. For example, the reference [14] studies the
synchronization control of memristor complex valued neural networks with time
delay. The synchronization problem of coupled neural networks with distributed
delays is studied in the reference [15].

The memristor neural networks exhibit rich dynamic behaviors, mainly in sta-
bility, chaos and bifurcation. The global asymptotic stability of recurrent neural
networks with discrete time-varying delays and distributed time-varying delays
is studied in [16]. The highly correlated chaotic behavior of recurrent neural
networks under structural connectivity in [17]. Reference [18] studies the inte-
ger bifurcation and chaotic behavior in memristor Chen system. Reference [19]
discusses the zero-Hopf bifurcation behavior of memristor BAM neural network
model with delay and diffusion. In the study of bifurcation and its control, re-
searchers usually prevent, delay, or guide bifurcation phenomena by adjusting
system parameters or introducing external controls. For example, literature [20]
analyzed the dynamic behavior and control problem of Lesley-Gower predator-
prey system, and literatur [21] discussed the Hopf bifurcation problem of the
economic model, and proposed a time-delay feedback control scheme to control
the bifurcation.

From the above narrative, we find that fractional-order memristor delay Hop-
field neural network not only combines the advantages of fractional-order cal-
culus and memristor, but also introduces the disturbance effect of time delay,
which can simulate the complex behavior of neurons and its memory effect more
accurately. In this paper, we construct a fractional order double memristor delay
Hopfield neural network system, analyze the effects of time delay on the system,
and simulate the effects of time delay on organisms in biological nervous systems.

2 Model description

The bidirectional electromagnetically induced current between neuron 1 and
neuron 2 is simulated by a magnetic-controlled memristor. Its mathematical
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model can be described as the following form{
iM = G(y1)νM = k1y1νM ,
ẏ1 = νM ,

(1)

where k1 represents the coupling strength of neurons under electromagnetic in-
duction, y1 represents the magnetic flux of the memristor. G(y1) = k1y1 rep-
resents the derivative function, vM and iM represent the membrane potential
difference between neuron 1 and neuron 2 and the induced current through the
memristor, respectively.

The self-connecting synapse of neuron 2 is simulated by a quadratic nonlinear
magneto-controlled memristor.Its mathematical model can be described as{

i = k2(c− dy22)ν,
ẏ2 = ν − y2,

(2)

where k2 represents the coupling strength of the memristor synapse,y2 represents
the magnetic flux of the memristor,G(y2) = c − dy22 represents a derivative
function,v and i Represents the membrane potential of neuron 2 and the current
flowing through the memristor, respectively.

Based on the above two memristors, a fractional double memristor Hopfield
neural network model is constructed, which is affected by electromagnetic in-
duction and time delay. The system is as follows:

Dθx1(t) = −c1x1(t) + a11 tanh (x1(t)) + a12 tanh (x2(t− τ))
+k1y1(x2(t)− x1(t)),

Dθx2(t) = −c2x2(t) + a21 tanh (x1(t− τ)) + k2(c− dy22) tanh (x2(t))
−k1y1(x2(t)− x1(t)),

Dθy1 = x2(t)− x1(t),
Dθy2 = tanh (x2(t))− y2,

(3)

where θ ∈ (0, 1] it’s fractional, Dθ represents the fractional derivative of Caputo,
xi(i = 1, 2) represents the membrane voltage of the i-th neuron,yi(i = 1, 2) rep-
resents the internal state variable of the memristor,Hyperbolic tangent function
tanh(xn)(n = 1, 2) represents the neuron activation function from the voltage
input from the n-th neuron, and its coefficient aij is the mutual synaptic weight,
indicating the connection strength,coefficient ci(i = 1, 2) it’s a self-connecting
synapse,τ are the time delay existing in the system.

3 Local stability and bifurcation analysis of uncontrolled
systems

In this section, the delay is used as a bifurcation parameter to discuss the
local stability of the equilibrium point of system (3) and the conditions of Hopf
bifurcation. Then the linearized equation of the system at the origin O(0,0,0,0)
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is as follows :
Dθx1(t) = −c1x1(t) + a11x1(t) + a12x2(t− τ) + k1y1(x2(t)− x1(t)),
Dθx2(t) = −c2x2(t) + a21x1(t− τ) + k2cx2(t)− k1y1(x2(t)− x1(t)),
Dθy1 = x2(t)− x1(t),
Dθy2 = x2(t)− y2.

(4)

Applying the Laplace transform, the characteristic equation of system (4) is:∣∣∣∣∣∣∣∣
λθ − J11 −J

′

12 − J
′′

12e
−λτ −J13 0

−J
′

21 − J
′′

21e
−λτ λθ − J22 −J23 0

1 −1 λθ 0
0 −1 0 λθ + 1

∣∣∣∣∣∣∣∣ = 0. (5)

where J11 = −c1 + a11 − k1y1, J
′

12 = k1y1, J
′′

12 = a12, J13 = k1(x2 − x1), J
′

21 =
k1y1, J

′′

21 = a21, J22 = −c2 + k2c− k1y1, J23 = −k1(x2 − x1).
The characteristic equation corresponding to equation (5) is as follows:

D(λ, τ) = D0(λ) +D1(λ)e
−λτ +D2(λ)e

−2λτ = 0, (6)

where D0(λ) = λ4θ + b1λ
3θ + b2λ

2θ + b3λ
θ + b4, D1(λ) = b5λ

2θ + b6λ
θ + b7,

D2(λ) = b8λ
2θ + b9λ

θ, b2 = −J11 − J22 − J13 + J23 + J22J11 − J ′
21J

′
12,

b3 = −J13 + J23 − J ′
21J

′
12 − J23J11 − J23J

′
12 + J13J

′
21 + J13J22 + J11J22,

b4 = −J11J23 − J23J12 + J13J
′
21 + J13J22, b5 = −J ′

12J
′′
21 − J ′′

12J
′
21,

b6 = −J ′
12J

′′
21 − J ′

21J
′′
12 − J ′′

12J23 + J ′′
21J13, b1 = 1− J11 − J22,

b7 = −J ′′
12J23 + J ′′

21J13, b8 = J ′′
21J

′′
12, b9 = −J ′′

21J
′′
12.

According to the characteristic equation, the stability of the equilibrium point
is divided into the following two cases.

Case 1. When τ = 0 , the system characteristic equation is

P = λ4θ +m1λ
3θ +m2λ

2θ +m3λ
θ +m4 = 0 (7)

where m1 = b1,m2 = b2 + b5 + b8,m3 = b3 + b6 + b9,m4 = b4 + b7.

Lemma 1. For the following fractional order system: Dθx(t) = Ax(t), A ∈
Rn×n, the equilibrium point of the system is locally asymptotically stable if all
eigenvalues λi(i = 1, 2...n) satisfy | arg(λi)| > θπ

2 , where θ ∈ (0, 1].

Then according to Lemma 1 and Routh-Hurwitz stability criterion, we have:

Theorem 1. The system (3) is locally asymptotically stable if and only if ∆i >
0(i = 1, 2, 3, 4) is true, where ∆i is defined as follows:

∆1 = m1, ∆2 =

∣∣∣∣m1 m3

1 m2

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣
m1 m3 0
1 m2 m4

0 m1 m3

∣∣∣∣∣∣ , ∆4 = m4∆3.

Case 2. When τ > 0, to simplify this equation, we multiply both sides of the
equation by eλτ , in which case equation (6) is reduced to the following:
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D0(λ)e
λτ +D1(λ) +D2(λ)e

−λτ = 0. (8)

Let λ = iw = w(cos π
2 + i sin π

2 )(w > 0) be the root of the system, then
substitute this value into the characteristic equation, separating the real and
imaginary parts, and get:{

U2 + (U1 − U3) cosωτ − (η1 + η3) sinωτ = 0,
η2 + (η1 − η3) cosωτ − (U1 + U3) sinωτ = 0,

(9)

where U1 = ω4θ cos 2θπ + b1ω
3θ cos 3θπ

2 + b2ω
2θ cos θπ + b3ω

θ cos θπ
2 + b4, η1 =

ω4θ sin 2θπ+b1ω
3θ sin 3θπ

2 +b2ω
2θ sin θπ+b3ω

θ sin θπ
2 , U2 = b5ω

2θ cos θπ+b6ω
θ cos θπ

2 +

b7, η2 = b5ω
2θ sin θπ+b6ω

θ sin θπ
2 , U3 = b8ω

2θ cos θπ+b9ω
θ cos θπ

2 , η3 = b8ω
2θ sin θπ+

b9ω
θ sin θπ

2 .
According to formula (9), and it can be obtained that{

cosωτ = −U2(U1+U3)+η2(η1+η3)
U2

1−U2
3+η2

1−η2
3

,

sinωτ = U2(η1+η3)−η2(U1+U3)
U2

1−U2
3+η2

1−η2
3

.
(10)

From equation (10), it can be obtained:

τ
(k)
i =

1

ωi

[
arccos

(
−U2(U1 + U3) + η2(η1 + η3)

U2
1 − U2

3 + η21 − η23

)
+ 2kπ

]
, k = 0, 1, 2, . . . .

(11)
where we take

τ0 = τi0 = min
i=1,2,...

{τi} , ω0 = ωi0 . (12)

Then at τ = τ0, we have a pair of pure imaginary roots of the equation,
and at τ ∈ [0, τ0), the roots of the equation have negative real parts. Let
λ(τ) = u(τ)+iw(τ)(w > 0) be the root of equation (9) satisfying limτ→τ0 u(τ

k
i ) =

0, limτ→τ0 w(τ
k
i ) = w0 near τ = τ

(k)
i . By taking the derivative of τ in the char-

acteristic equation (9), the following formula can be obtained:

dλ

dτ
=

α1(w0, τ0) + α2(w0, τ0)

β1(w0, τ0) + β2(w0, τ0)
, (13)

and
Re[

dλ

dτ
] =

α1(w0, τ0)β1(w0, τ0) + α2(w0, τ0)β2(w0, τ0)

β2
1(w0, τ0) + β2

2(w0, τ0)
. (14)

Obviously β2
1(w0, τ0) + β2

2(w0, τ0) must be greater than 0, so we can get:

sign

{
Re

[
dλ
dτ

]
|τ=τ0

}
= sign {α1(w0, τ0)β1(w0, τ0) + α2(w0, τ0)β2(w0, τ0)} .

If condition (H1)sign{Re[dλdτ ]} ≠ 0, then transversal condition Re
[dλ

dτ

]
|τ=τ0 ̸=

0 holds.
Based on the above analysis, the following theorems can be obtained :
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Theorem 2. For the system (3), assume (H1) is true.
(1) If τ ∈ [0, τ0), the system is locally asymptotically stable at the equilibrium

point O;
(2) If τ > τ0, the system is unstable at the equilibrium point O, and a Hopf

bifurcation occurs at O at τ = τ0.

4 Stability and bifurcation analysis of controlled systems

In this section, a state feedback controller is added to the fractional-order
delay dual memristor system to improve the dynamic performance of the system,
increase the critical delay of Hopf bifurcation and delay the Hopf bifurcation
point of the system. It is essential to enhance the robustness of the system so
that it can remain stable in the face of stronger disturbances. The controller
model in this section is represented as follows:

U(t) = δ[x(t)− x(t− τ)],

where δ represents the feedback gain and τ represents the delay inside the feed-
back controller.

We add the state feedback controller to the first item of the system, then the
system model is as follows:

Dθx1(t) = −c1x1(t) + a11 tanh (x1(t)) + a12 tanh (x2(t− τ))
+k1y1(x2(t)− x1(t)) + δ(x2(t)− x2(t− τ)),

Dθx2(t) = −c2x2(t) + a21 tanh (x1(t− τ)) + k2(c− dy22) tanh (x2(t))
−k1y1(x2(t)− x1(t)),

Dθy1 = x2(t)− x1(t),
Dθy2 = tanh (x2(t))− y2.

(15)

Obviously, we get the same balance point for uncontrolled and controlled
systems. Then the linearized system at the origin O is as follows

Dθx1(t) = −c1x1(t) + a11x1(t) + a12x2(t− τ) + k1y1(x2(t)− x1(t))
+δ(x2(t)− x2(t− τ)),

Dθx2(t) = −c2x2(t) + a21x1(t− τ) + k2cx2(t)− k1y1(x2(t)− x1(t)),
Dθy1 = x2(t)− x1(t),
Dθy2 = x2(t)− y2.

(16)

Then the characteristic equation of the system is:∣∣∣∣∣∣∣∣
λθ − T11 −T

′

12 − T
′′

12e
−λτ1 −T13 0

−T
′

21 − T
′′

21e
−λτ2 λθ − T22 −T23 0

1 −1 λθ 0
0 −1 0 λθ + 1

∣∣∣∣∣∣∣∣ = 0. (17)

where T11 = −c1 + a11 − k1y1, T
′

12 = k1y1 + δ, T
′′

12 = a12 − δ, T13 = k1(x2 −
x1), T

′

21 = k1y1, T
′′

21 = a21, T22 = −c2 + k2c− k1y1, T23 = −k1(x2 − x1).



Analysis of Fractional-Order Delayed Memristive Neural Networks 7

The characteristic equation of system (15) is:

P (λ, τ) = P0(λ) + P1(λ)e
−λτ + P2(λ)e

−2λτ = 0. (18)

where P0(λ) = λ4θ + l1λ
3θ + l2λ

2θ + l3λ
θ + l4, P1(λ) = l5λ

2θ + l6λ
θ + l7, P2(λ) =

l8λ
2θ+ l9λ

θ, l1 = 1−T11−T22, l2 = −T11−T22−T13+T23+T22T11−T
′

21T
′

12, l3 =
−T13+T23−T

′

21T
′

12−T23T11−T23T
′

12+T13T
′

21+T13T22+T11T22, l4 = −T11T23−
T23T12+T13T

′

21+T13T22, l5 = −T
′

12T
′′

21−T
′′

12T
′

21, l6 = −T
′

12T
′′

21−T
′

21T
′′

12−T
′′

12T23+
T

′′

21T13, l7 = −T
′′

12T23 + T
′′

21T13, l8 = T
′′

21T
′′

12, l9 = −T
′′

21T
′′

12.

To simplify this equation, we multiply both sides of the equation by eλτ , in
which case equation (18) is reduced to the following:

P0(λ)e
λτ + P1(λ) + P2(λ)e

−λτ = 0. (19)

At this time, we only study the effect When τ > 0, let λ = iw = w(cos π
2 +

i sin π
2 )(w > 0), put it into the characteristic equation, separate the real and

imaginary parts can be obtained:{
M2 + (M1 −M3) cosωτ − (N1 +N3) sinωτ = 0,
N2 + (N1 −N3) cosωτ − (M1 +M3) sinωτ = 0,

(20)

where M1 = ω4θ cos 2θπ + b1ω
3θ cos 3θπ

2 + b2ω
2θ cos θπ + b3ω

θ cos θπ
2 + b4, N1 =

ω4θ sin 2θπ+b1ω
3θ sin 3θπ

2 +b2ω
2θ sin θπ+b3ω

θ sin θπ
2 ,M2 = b5ω

2θ cos θπ+b6ω
θ cos θπ

2 +

b7, N2 = b5ω
2θ sin θπ+b6ω

θ sin θπ
2 ,M3 = b8ω

2θ cos θπ+b9ω
θ cos θπ

2 , N3 = b8ω
2θ sin θπ+

b9ω
θ sin θπ

2 .

By simplifying equation (20), we can get:{
cosωτ = −M2(M1+M3)+N2(N1+N3)

M2
1−M2

3+N2
1−N2

3
,

sinωτ = M2(N1+N3)−N2(M1+M3)
M2

1−M2
3+N2

1−N2
3

.
(21)

According to the previous analysis of uncontrolled systems, we also derive the
conditions for Hopf bifurcation in controlled systems.

Lemma 2. If w1 makes H(w) = 0, then when τ = τ1, the eigenequation has a
pair of pure imaginary roots ±w1, where

τ ji =
1

wi
(arc cos(−M2(M1 +M3) +N2(N1 +N3)

M2
1 −M2

3 +N2
1 −N2

3

+ 2kπ), j = 0, 1, 2, ...,

τ1 = τi1 = min
i=1,2,...

{τi} , ω1 = ωi1 .

Lemma 3. Let λ(τ) = ς(τ)+ iw(τ)(w > 0) be the root of equation(21)satisfying
lim
τ→τ1

ς(τ ji ) = 0, lim
τ→τ1

w(τ ji ) = w1 near τ ji . So the condition for Hopf bifurcation

is Re[dλdτ ]|w=w1,τ=τ1 ̸= 0.
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Proof. By differentiating τ in the characteristic equation (18), the following for-
mula can be obtained:

dλ

dτ
=

A1(w1, τ1) +A2(w1, τ1)

B1(w1, τ1) +B2(w1, τ1)
,

and
Re[

dλ

dτ
] =

A1(w1, τ1)B1(w1, τ1) +A2(w1, τ1)B2(w1, τ1)

B2
1(w1, τ1) +B2

2(w1, τ1)
.

Then,

sign

{
Re

[
dλ
dτ

]
|τ=τ1

}
= sign {A1(w1, τ1)B1(w1, τ1) +A2(w1, τ1)B2(w1, τ1)} .

Then, when condition (H2) sign
{
Re

[dλ
dτ

]
|τ=τ1

}
̸= 0 holds, the system satisfies

Hopf bifurcation condition.

Based on the above analysis, the following theorem can be obtained:

Theorem 3. If condition (H2) is true.
(1) When τ ∈ [0, τ1), the system is locally asymptotically stable at the equi-

librium point O;
(2) When τ > τ1, the system is unstable at the equilibrium point O, and at

τ = τ1, a Hopf bifurcation occurs at O.

5 Numerical simulation

For the uncontrolled system (3) and the controlled system (15), we set the
corresponding system parameters to verify the correctness of the theoretical
analysis, and study the influence of time-delay τ on the system.

For uncontrolled systems (3) set the parameter to c1 = c2 = k2 = c =
1, a11 = −0.1, a12 = 4, a21 = −3.4, k1 = 0.17, d = 0.4. Let the initial value be
(0.1,0.1,0.1,0.1) and the fractional order θ be 0.95. Then the system is:

Dθx1(t) = −x1(t)− 0.1 tanh (x1(t)) + 4 tanh (x2(t− τ)) + 0.17y1(x2(t)− x1(t)),
Dθx2(t) = −x2(t)− 3.4 tanh (x1(t− τ)) + (1− 0.4y22) tanh (x2(t))

−0.17y1(x2(t)− x1(t)),
Dθy1 = x1(t)− y1,
Dθy2 = tanh (x2(t))− y2.

At this time, according to the above parameters and equations, we can sim-
ulate and analyze the fractional-order memristor neural networks :

(1) According to equation (11), we can get the critical delay point τ0 =0.06.
Obviously, we can see that τ0 is small, which means that the system can only
be stable with a small delay, and the system bifurcates into chaos by period-
doubling at τ = 0.47. Secondly, the stability of the system is analyzed according
to the sequence diagram and phase diagram of the system. First, in τ = 0, we
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can calculate ∆i > 0, verifying the validity of Lemma 1 and theorem 1, that
the equilibrium point of the system is locally asymptotically stable under the
condition of no delay (as shown in Figure 1). When the value is τ = 0.05 < τ0,
the system is in a stable state (as shown in Figure 2). As can be seen from
the figure, with the increase of time, the neuronal variables eventually tend to a
stable state, and the generated periodic solutions are evenly distributed in space.
When τ = 0.07 > τ0, the system is in an unstable state (see Figure 3). As can
be seen from the figure, the neuronal variables do not tend to be stable with the
increase of time, and the generated periodic solutions are not uniform in space,
at which time the system generates multiple limit cycles.

Fig. 1. When θ = 0.95, τ = 0, the waveform graph and phase diagram of system (3),
the equilibrium point is locally asymptotically stable.

Fig. 2. When θ = 0.95, τ = 0.05 < τ0, the waveform graph and phase diagram of
system (3), the equilibrium point is locally asymptotically stable.
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Fig. 3. When θ = 0.95, τ = 0.07 > τ0, the waveform graph and phase diagram of
system (3), the equilibrium point is unstable and the system Hopf bifurcation occurs.

Fig. 4. When θ = 0.95, τ = 0.07 < τ1, the waveform graph and phase diagram of
system (15), the equilibrium point is stable.

(2) Set parameter δ = 4 for the controlled system, and the other parameters
are the same as those for the uncontrolled system.

Dθx1(t) = −x1(t)− 0.1 tanh (x1(t)) + 4 tanh (x2(t− τ)) + 0.17y1(x2(t)− x1(t))
+4(x2(t)− x2(t− τ)),

Dθx2(t) = −x2(t)− 3.4 tanh (x1(t− τ)) + (1− 0.4y22) tanh (x2(t))
−0.17y1(x2(t)− x1(t)),

Dθy1 = x1(t)− y1,
Dθy2 = tanh (x2(t))− y2.

By calculating and comparing with the bifurcation diagram (5), we get the
critical delay τ1 = 0.115. Compared to an uncontrolled system, the critical delay
increases and the bifurcation point delays, which means that the system can
remain stable over a wider range of delays. When τ = 0.07 < τ1, in the uncon-
trolled system, the system cannot reach stability, resulting in Hopf branching,
while in the controlled system, the system is in a stable state under the action
of the controller (as shown in Figure 4), thus verifying the role of the controller
on the system.
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6 Conclusion

In this paper, the stability and bifurcation characteristics of a class of
fractional-order double memristive Hopfield neural networks with time delay
are studied,Two memristors are selected, one is used to characterize the elec-
tromagnetic induction effect of the system, and the other is used to simulate
the coupling between memristor synapses. The local stability of the equilibrium
point of the system is analyzed, the time delay is selected as the bifurcation
parameter, the bifurcation behavior of the system is analyzed. Then, a state
feedback controller is designed to control the bifurcation of the system, so that
the system can maintain stability and increase the robustness of the system.
The numerical simulation shows that the system with the controller expands the
stability range of the original system and achieves the ideal control effect.

The authors will continue to study memristor based neural networks in depth,
especially in the following two aspects of future work: first, the study of more
complex systems. The memristor is used as a connection synapse to form a
complex neural network model by coupling multiple neurons. Compared with
traditional neural networks, the coupled model is more complex and variable.
Second, explore more complex dynamic behaviors and applications. In addition
to stability and bifurcation phenomena, deeper dynamical properties such as
hyperchaos and attractors will also be looked at, which are of great importance
for practical applications such as encrypted communications.
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