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Abstract. Unlike other medical images, polyp images usually contain a lot of 
noise interference, which reduces the accuracy of polyp segmentation. To solve 
the problem of polyp images containing a large amount of noise interference, a 
Multi-stage Noise Suppression Network (MNSNet) that integrates Transformer 
and CNN is proposed. Firstly, for the problem that low-level polyp features con-
tain a lot of background noise interference, the Polyp Background Noise Sup-
pression (PBNS) module is constructed based on the self-attention to improve the 
anti-background noise ability of MNSNet in the feature extraction stage, which 
in turn improves the network's performance in polyp segmentation.  Secondly, to 
address the lack of anti-interference ability of the semantic fusion method in the 
existing polyp segmentation network, the Polyp Dynamic Noise Suppression 
(PDNS) module is constructed based on the dynamic kernel method to improve 
the adaptability of MNSNet to complex and variable noise interference in the 
polyp images during the semantic fusion stage, thereby improving the network's 
polyp segmentation accuracy.  Experiment results show that the MNSNet has 
best performance compare with five methods (SANet, SSFormer, PPFormer, 
TransFuse and Meta-Polyp), under five benchmark polyp segmentation datasets 
(the Kvasir dataset, the CVC-ClinicDB dataset, the CVC-ColonDB dataset, the 
CVC-T dataset and the ETIS dataset). In particular, compared with the Meta-
Polyp, MNSNet improves mDice and mIoU by 2.2% and 2.0% on the ETIS da-
taset. 

Keywords: Deep Learning, Attention Mechanism, Dynamic Kernel, Noise 
Suppression, Polyp Image Segmentation 

1 Introduction 

Early colonoscopy helps physicians respond to colorectal polyps before they develop 
into colorectal cancer (CRC), which reduces the incidence of CRC [1]. Polyp detection 
based on colonoscopy is highly dependent on the physician's experience and has a rate 
of missed detections [2]. Based on deep learning theory and computer technologies, it 
is of great academic significance and application value to study automatic and accurate 
polyp segmentation methods to assist doctors in detecting polyps. 
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The automatic segmentation of polyps has gradually evolved from traditional meth-
ods based on manually designed features to modern methods based on deep learning. 
SANet [3] uses shallow attention blocks to fuse different levels of polyp features, and 
uses a probability correction strategy to alleviate the problem of polyp pixel imbalance, 
thereby improving the effectiveness of the model's polyp segmentation. SSFormer [4] 
uses a progressive local decoder to solve the attention dispersion problem of the Trans-
former encoder network, thereby improving the adaptability of the Transformer struc-
ture to polyp segmentation tasks. PPFormer [5] uses predictive graph guidance algo-
rithms to focus on difficult to segment areas in the image, which enhances the model's 
perception of polyp boundaries. TransFuse [6] uses two branches, CNN and Trans-
former, to extract low-level detail information and improve the efficiency of global 
context modeling, which enhances the robustness of the algorithm. Meta-Poly [7] in-
troduced multi-scale up-sampling blocks in the decoder to improve the algorithm's sen-
sitivity to detailed textures, thereby further improving the accuracy of polyp segmenta-
tion. The above representative studies have overlooked a problem: unlike other medical 
images, polyp images often contain a large amount of noise interference, such as intes-
tinal impurities, specular reflection, intestinal peristalsis, etc. The noise interference in 
polyp images will affect the perception of polyp areas by polyp segmentation methods 
and reduce the accuracy of polyp segmentation methods. However, existing research 
rarely considers the issue of noise interference in polyp images during both feature ex-
traction and semantic fusion stages. 

In order to solve the problem of polyp images containing a large amount of noise 
interference, a Multi-stage Noise Suppression Network (MNSNet) integrating Trans-
former and CNN is proposed to improve the accuracy of polyp segmentation. MNSNet 
uses parallel CNN branches and Transformer branches to extract polyp features sepa-
rately, improving the network's ability to obtain global and local information, thereby 
enhancing the robustness of the network. In the stage of polyp feature extraction, a 
Polyp Background Noise Suppression (PBNS) module is designed based on self-atten-
tion mechanism. The PBNS module is used to increase the attention of MNSNet to the 
polyp target area and improve the network's anti-interference ability against back-
ground noise, thereby improving the polyp segmentation effect of the network. In the 
semantic fusion stage of polyps, a Polyp Dynamic Noise Suppression (PDNS) module 
is designed based on the dynamic kernel method. The PDNS module dynamically gen-
erates a variable convolution kernel based on input data, which enables MNSNet to 
flexibly handle complex and variable polyp noise interference and improve its adapta-
bility to different noise interferences, thereby improving the polyp segmentation accu-
racy of MNSNet. To evaluate the performance of the MNSNet for polyp segmentation, 
comparison experiments were conducted with five methods on five benchmark polyp 
segmentation datasets. The experiment results show the effectiveness and superiority 
of MNSNet. 

The paper is organized as follows. In Section 2, the details of proposed network 
are described. In Section 3, the experiment results are presented. Lastly, a brief conclu-
sion is given in Section 4. 
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2 Multi-stage Noise Suppression Network 

The overall structure of the proposed MNSNet is shown in Fig. 1. The network mainly 
includes two branches: the Transformer branch and the CNN branch. The Transformer 
branch of MNSNet uses the cascaded partial decoder CPD [8] to aggregate the high-
level polyp features  ( =1,2,3) extracted by the PVT backbone network to generate 
a global feature map  rich in global semantic information. The CNN branch of 
MNSNet uses the second, third and fourth level polyp features extracted by the ResNet 
backbone network to generate a polyp feature map to retain more local spatial detail 
information in the polyp image. Specifically, in the feature extraction stage, the CNN 
branch of MNSNet adopts the classic structure of UNet. The two proposed PBNS mod-
ules are used to process the polyp features  ( =4,5,6) and obtain a local feature map 

 rich in spatial detail information and reduce the influence of background noise in-
terference. The local feature map  is processed by the PSE module [9] to obtain the 
enhanced local feature . In the semantic fusion stage, the proposed PDNS module is 
used to fuse the global feature map  and the enhanced local feature  to obtain 
the final feature map  and improve the adaptability of the network to different polyp 
noises. The global feature map , local feature map  and final feature map  are 
directly compared with the polyp segmentation true label GT to calculate the loss. The 
prediction result map Prediction is obtained by processing  with the Sigmoid func-
tion. The design of each component of MNSNet is introduced in detail below. 
 

 
Fig. 1. Overview of the proposed MNSNet. 

2.1 Polyp Background Noise Suppression Module 

In order to retain more local detail information of polyp images, the MNSNet uses the 
second, third and fourth level polyp features in the ResNet50 backbone network to gen-
erate local feature maps. The low-level polyp features have a larger resolution and con-
tain more spatial detail information, but also contain a lot of background noise 
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interference. In order to solve the problem of polyp background noise interference in 
the CNN branch of MNSNet, a PBNS module is designed based on the self-attention 
mechanism. The PBNS module activates the semantic information of the polyp target 
area in the network feature extraction stage, thereby improving the ability of MNSNet 
to resist background noise interference. The specific structure of PBNS is shown in Fig. 
2. 

 

Fig. 2. Structure of the PBNS module. 

Taking the background noise suppression operation of polyp features  and  as an 
example, the PBNS module can be expressed as: 

 , (1) 

where (·) is an up-sampling operation,  (·) is the feature concatenation opera-
tion in the channel dimension,  (·) is the background noise suppression operation 
based on self-attention, and (·) is the semantic refinement operation of the polyp tar-
get area, which sequentially includes 3×3 convolutional layer, batch normalization 
layer and ReLU. The PBNS module uses up-sampling and feature concatenation oper-
ations to fuse polyp features of different levels and obtain , which retains the original 
information of polyp features of different levels. 

The background noise suppression operation (·) is the key to the PBNS module, 
and the self-attention calculation formula for this operation is: 

 

 , (2) 

where , , and  are queries, keys, and values matrices respectively, and  is 
the dimension of each attention head. Different from the general Transformer structure, 
the background noise suppression operation uses pyramid pooling (PyramidPool) and 
reshape operations to generate the keys matrix  and the values matrix , and uses 
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the reshape operation to change the dimension of the input feature to generate the query 
matrix . The introduction of pyramid pooling allows the background noise suppres-
sion operation to use smaller-scale global features to calculate the standard attention, 
which on the one hand enhances the multi-scale perception and global perception ca-
pabilities of the PBNS module, and on the other hand effectively reduces the amount 
of calculation. The background noise suppression operation uses pyramid pooling and 
reorganization to achieve self-attention modeling, and then improves the attention of 
low-level polyp features to the polyp target area through self-attention. Therefore, the 
PBNS module can activate the effective information of the polyp target area, thereby 
reducing the adverse effects of background noise interference on the polyp image seg-
mentation network. 

The PBNS module uses self-attention to activate the semantic information of the 
polyp target area and improve the feature contrast between the polyp target area and the 
background area, which reduces the influence of noise interference in the background 
area of the polyp image and further improves the polyp segmentation accuracy of 
MNSNet. 
2.2 Polyp Dynamic Noise Suppression Module 

The existing polyp image segmentation network that integrates Transformer and CNN 
usually uses a fixed kernel method to fuse polyp semantics extracted from different 
structures. These fusion methods lack anti-interference ability and cannot suppress 
complex and changeable polyp image noise. In order to solve the problem of insuffi-
cient anti-interference ability of polyp semantic fusion methods, a PDNS module is 
designed based on the dynamic kernel method to improve the adaptability of the polyp 
image segmentation network to different polyp image noise interference. The specific 
structure of the PDNS module is shown in Fig. 3. 
 

 
 

Fig. 4. Structure of the PDNS module. 
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In the semantic fusion stage of MNSNet, the PDNS module uses dynamic kernel gen-
eration operation to process local feature  to generate dynamic convolution kernels, 
and uses depthwise separable convolution to achieve deep fusion of polyp semantics 
and obtain the final feature map . The PDNS module can be expressed as: 

 , (3) 

where  is the local feature extracted and enhanced by the CNN branch,  is the 
global feature map extracted by the Transformer branch, (·) is the depthwise sep-
arable convolution, (·) is the dynamic kernel generation operation, and (·) is 
the global semantic expansion operation, which sequentially includes 3×3 convolution 
layer, batch normalization Batch Norm layer, ReLU. 

 (·) is the dynamic kernel generation operation, which includes group normal-
ization operation (GroupNorm), ReLU, adaptive average pooling (AdaptiveAvgPool), 
Linear and Reshape in sequence. Where the group normalization operation groups and 
normalizes the input polyp local features , helping the dynamic kernel generation 
operation to better understand the distribution and relationship of the input features;  
the ReLU activation function introduces nonlinear fitting capabilities, allowing the dy-
namic kernel generation operation to handle complex noise interference information; 
adaptive average pooling introduces global perception capabilities to the dynamic ker-
nel generation operation, and generates the initial dynamic convolution kernel at the 
same time; Linear linearly transforms and projects the initial dynamic convolution ker-
nel from the channel dimension, helping the dynamic kernel generation operation to 
achieve more refined feature representation; the Reshape operation adjusts the dimen-
sion of the initial dynamic convolution kernel so that it can be used as a dynamic con-
volution kernel to perform convolution operations on the expanded global feature map. 
The dynamic kernel generation operation enables the PDNS module to dynamically 
adjust the convolution kernel according to the noise information of the input data during 
the inference stage of the algorithm network, which improves the pertinence and flexi-
bility of the PDNS module in handling different polyp image noise interference infor-
mation, thereby improving the adaptability of the polyp image segmentation algorithm 
to complex and changeable polyp image noise interference. 

Depthwise separable convolution  (·) sequentially includes depthwise convo-
lution and pointwise convolution. Depthwise convolution performs independent con-
volution operations on each channel of the input feature, which can fuse the spatial 
information of different features. Pointwise convolution performs convolution opera-
tions on each pixel of the output feature of Depthwise convolution, which can integrate 
the information of the channel dimension. Depthwise separable convolution fuses the 
global feature map  and the local feature  from the spatial and channel dimen-
sions, realizing the multi-dimensional fusion of polyp semantics. The introduction of 
Depthwise convolution further improves the flexibility and adaptability of the semantic 
fusion method, enabling the PDNS module to effectively handle the complex and 
changeable noise interference in polyp images. 
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The PDNS module dynamically adjusts the convolution kernel according to the 
noise interference information contained in the input features and uses depthwise sep-
arable convolution to achieve multi-dimensional semantic fusion, which improves the 
adaptability of MNSNet to different polyp noise interferences and improves the net-
work's polyp segmentation performance. 
2.3 Loss Function 

The loss function is defined as： 

 , (4) 

where   denotes the weighted IoU loss [10] and   denotes the weighted binary 
cross entropy (BCE) loss [11]. Unlike the widely used standard IoU loss and standard 
BCE loss, weighted IoU loss and weighted BCE loss pay more attention to pixels with 
greater segmentation difficulty, which helps MNSNet increase its attention to pixels 
with noise interference, thereby improving the accuracy of network segmentation of 
polyp images with noise interference. Specifically, the loss is calculated for the local 
feature map  extracted by the CNN branch, the global feature map  extracted by 
the Transformer branch and the final feature map . The loss function can be ex-
pressed as: 

 , (5) 

where GT is the true label for polyp segmentation. 

3 Comparative Experiments of Polyp Segmentation 

In this section, the proposed MNSNet is compared with five representative polyp seg-
mentation methods in experimental analysis. 
3.1 Datasets and Implementation Details 

The polyp segmentation performance of MNSNet is tested on five benchmark polyp 
segmentation datasets including Kvasir [12], CVC-ClinicDB [13], CVC-ColonDB 
[14], CVC-T [15] and ETIS [16]. The training set and test set are divided in the same 
way as SANet [3]. The training set consists of 900 images in Kvasir and 550 images in 
CVC-ClinicDB (1450 images in total). The test set consists of 100 images in Kvasir 
that are not involved in training, 62 images in CVC-ClinicDB that are not involved in 
training, 60 images in CVT-T, 380 images in CVC-ColonDB, and 196 images in ETIS 
(798 images in total).  

MNSNet is implemented based on the PyTorch framework and trained on a single 
3090 GPU for 50 epochs with mini-batch size 16. The resolution of all input images is 
uniformly resized to 352×352 and image scaling is used for data enhancement. Adam 
as the optimizer is applied with the learning rate 1e−4 during training. 
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3.2 Evaluation Metrics 

Six evaluation metrics is used to evaluate the polyp segmentation performance of CSE-
Net, including mean Dice (mDice), mean IoU (mIoU), mean absolute error (MAE), 
weighted F-measure ( ), S-measure ( ) and E-measure ( ). The lower value is 
better for the MAE and the higher is better for others.  
 
3.3 Comparative Experiments of Polyp Segmentation 

MNSNet was compared with five representative polyp segmentation methods, namely 
SANet [3], SSFormer [4], PPFormer [5], TransFuse [6] and Meta-Polyp [7]. SANet is 
a polyp segmentation method based on CNN, SSFormer and PPFormer are polyp seg-
mentation methods based on Transformer, and TransFuse and Meta-Polyp are polyp 
segmentation methods that integrate Transformer and CNN. 

As shown in Table 1, the majority of the metrics of MNSNet are better than the 
remaining five representative polyp segmentation methods on four benchmark data 
sets. Compared to the suboptimal method Meta-Polyp, MNSNet improves mDice and 

 by 1.0% and 1.4% on the CVC-ClinicDB dataset, and improves mDice and  by 
2.2% and 1.5% on the CVC- ColonDB dataset. The PBNS module designed based on 
the self-attention mechanism can learn the relationship between different regions in the 
polyp image and increase the attention of MNSNet to the polyp target area, thereby 
reducing the adverse effects of background noise on MNSNet. In addition, the design 
of the PDNS module based on the dynamic kernel method can improve the pertinence 
and flexibility of the semantic fusion operation of MNSNet, which improves the adapt-
ability of MNSNet to the complex and changeable noise interference in polyp images. 
The experiments show that the polyp segmentation accuracy of MNSNet is better than 
the other five representative methods and validate the effectiveness and superiority of 
MNSNet.  
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Table 1. Quantitative comparison results of MNSNet with 5 representative polyp segmentation 
methods 

Dataset Method mDice mIoU    MAE 

Kvasir 

SANet 0.904  0.847  0.892  0.915  0.953  0.028  

SSFormer 0.917 0.864 0.910 0.925 0.956 0.023 

PPFormer 0.912 0.86 0.896 0.923 0.961 0.027 

TransFuse 0.915 0.86 0.906 0.919 0.956 0.023 

Meta-Polyp 0.916 0.869 0.907 0.926  0.959 0.022 

MNSNet(ours) 0.921 0.871 0.910 0.928 0.962 0.024 

ClinicDB 

SANet 0.916 0.859 0.909 0.939 0.976 0.012 

SSFormer 0.908 0.857 0.902 0.935 0.958 0.011 
PPFormer 0.919 0.876 0.915 0.943 0.969 0.008 

TransFuse 0.917 0.873 0.924 0.937 0.955 0.007 
Meta-Polyp 0.925 0.880 0.915 0.940 0.971 0.010 

MNSNet(ours) 0.935 0.889 0.929 0.946 0.979 0.007 

CVC-T 

SANet 0.888 0.815 0.859 0.928 0.972 0.008 

SSFormer 0.887 0.821 0.863 0.929 0.947 0.010 
PPFormer 0.872 0.800 0.842 0.919 0.958 0.011 

TransFuse 0. 870 0. 797 0. 844 0. 916 0. 943 0. 010 
Meta-Polyp 0.898 0.833 0.884 0.935 0.973 0.008 

MNSNet(ours) 0.903 0.836 0.879 0.932 0.965 0.007 

ColonDB 

SANet 0.753 0.670 0.726 0.837 0.878 0.043 
SSFormer 0.772 0.697 0.766 0.844 0.878 0.036 

PPFormer 0.791 0.709 0.769 0.850 0.907 0.033 
TransFuse 0.790 0.710 0.756 0.858 0.908 0.033 

Meta-Polyp 0.808 0.727 0.785 0.865 0.905 0.031 

MNSNet(ours) 0.810 0.731 0.790 0.868 0.910 0.030 

ETIS 

SANet 0.750   0.654 0.685 0.849 0.881 0.015 
SSFormer 0.767 0.698 0.736 0.863 0.857 0.016 
PPFormer 0.774 0.687 0.722 0.859 0.912 0.017 
TransFuse 0.748 0.657 0.695 0.85 0.835 0.018 

Meta-Polyp 0.772 0.692 0.738 0.854 0.877 0.022 
MNSNet(ours) 0.794 0.712 0.747 0.869 0.887 0.013 

In order to qualitatively evaluate the segmentation effect of MNSNet, 4 images from 
test sets are used as examples to conduct comparative experiments with 5 representative 
methods. The experimental results are shown in Fig. 4. The experiment shows that 
compared with the other 5 representative polyp segmentation methods, MNSNet has 
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the best polyp segmentation effect. Specifically, Figure (a) in (Ⅰ) contains multiple 
white intestinal impurities, Figures (b) to (f) in (Ⅰ) show that the other methods mis-
judge some white impurities as polyp tissues, and Figure (f) in (Ⅰ) shows that MNSNet 
accurately distinguishes polyp tissues from intestinal impurities. Figure (a) in (Ⅱ) 
shows that the upper part of the long polyp is dark and the lower part has reflective 
interference. Figures (b) to (f) in (Ⅱ) show that only MNSNet can completely segment 
the polyp lesion area, and the segmentation effect of the other methods is poor. Figure 
(a) in (Ⅲ) has serious intestinal impurities and light spots in the background area. Fig-
ures (b) to (f) in (III) show that the other methods are affected by the noise interference 
in the background area, misjudging the impurities and light spots in the background 
area as polyp tissues, and Figure (f) in (III) shows that MNSNet can correctly perceive 
the complete polyp lesion area. Figure (a) in (IV) shows that the edge of the polyp has 
a low contrast with normal tissue and is covered with a large amount of mucus. Figures 
(b) to (f) in (II) show that only MNSNet has a good segmentation effect, and the other 
methods cannot accurately determine the polyp boundary while locating the polyp. In 
the polyp segmentation process, MNSNet uses dual branches to extract polyp features 
at different levels and scales in parallel, uses the PBNS module to increase the network's 
attention to the polyp target area, reduces the interference of background noise on the 
network, and uses the PSDF module to improve the flexibility and adaptability of the 
semantic fusion method and improve the adaptability of MNSNet to noise interference 
in polyp images. From the qualitative comparison experimental results, it can be seen 
that the polyp segmentation effect of MNSNet is better than the other five representa-
tive polyp segmentation methods, and it can better complete the polyp segmentation 
task under noise interference conditions. 
3.4 Ablation Study 

In order to verify the effectiveness of the constructed PBNS module and PDNS module, 
ablation comparison experiments were conducted on five datasets. The MNSNet with-
out the PBNS module is recorded as "MNSNet-PBNS", and the MNSNet without the 
PDNS module is recorded as "MNSNet-PDNS". 
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Fig. 5. Qualitative comparison results of MNSNet with 5 representative polyp segmenta-
tion methods.  

 
As can be seen from Table 2., in the five data sets, most of the indicators of the 

complete MNSNet are better than those of the MNSNet without the PBNS module and 
the MNSNet without the PDNS module. Specifically, in the CVC-ClinicDB data set, 
compared with the MNSNet without the PBNS module, the complete MNSNet has im-
proved the mIoU indicator and the  indicator by 2.4% and 2.6%; In the CVC-T data 
set, compared with the MNSNet without the PDNS module, the complete MNSNet has 
improved the mIoU indicator and the  indicator by 3.6% and 2.5%. The PBNS mod-
ule uses self-attention to improve the feature contrast between the polyp target area and 
the background area, so that MNSNet pays more attention to the polyp target area, 
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thereby suppressing the interference of background noise. The PDNS module adap-
tively adjusts the parameters of the convolution kernel according to different input data, 
improving the flexibility and adaptability of the fusion strategy, which enables MNSNet 
to effectively cope with complex and changeable noise interference. Experiments show 
that the PBNS module and the PDNS module improve the polyp segmentation accuracy 
of MNSNet and are necessary. 

Table 2. Quantitative comparison results of ablation experiments with the PBNS module and 
PDNS module. 

Dataset Settings mDice mIoU    MAE 

Kvasir 
MNSNet-PBNS 0.917 0.868 0.905 0.928 0.958 0.025 
MNSNet-PDNS 0.906 0.856 0.897 0.921 0.950 0.028 

MNSNet 0.921 0.871 0.910 0.928 0.962 0.024 

ClinicDB 
MNSNet-PBNS 0.913 0.865 0.903 0.939 0.960 0.012 
MNSNet-PDNS 0.928 0.886 0.925 0.946 0.975 0.009 

MNSNet 0.935 0.889 0.929 0.946 0.979 0.007 

CVC-T 
MNSNet-PBNS 0.893 0.827 0.869 0.933 0.955 0.008 
MNSNet-PDNS 0.868 0.800 0.838 0.919 0.940 0.01 

MNSNet 0.903 0.836 0.879 0.932 0.965 0.007 

ColonDB 
MNSNet-PBNS 0.796 0.712 0.774 0.858 0.902 0.029 
MNSNet-PDNS 0.793 0.716 0.770 0.857 0.892 0.031 

MNSNet 0.810 0.731 0.790 0.868 0.910 0.030 

ETIS 
MNSNet-PBNS 0.777 0.698 0.724 0.861 0.861 0.018 
MNSNet-PDNS 0.784 0.708 0.73 0.869 0.858 0.015 

MNSNet 0.794 0.712 0.747 0.869 0.887 0.013 
In order to qualitatively evaluate the contribution of the PBNS and PDNS modules, 4 
images from test sets are used as examples for ablation experiments, and the experi-
mental results are shown in Fig. 6. The experiment shows that the MNSNet that con-
tains both the PBNS module and the PBSF module has the best polyp segmentation 
effect. Specifically, in Figure (a) of (Ⅰ), there is a bubble in the upper left corner of the 
polyp tissue that interferes with the endoscopic imaging. Figures (b) and (c) of (Ⅰ) show 
that the MNSNet without the PBNS module or the PDNS module misjudges the bubble 
as polyp tissue. Figure (d) of (Ⅰ) shows that the MNSNet method with the PBNS module 
and the PDNS module added can accurately distinguish between polyp tissue and bub-
ble interference. The left half of Figure (a) of (Ⅱ) is dark and there is an obvious light 
spot interference. Figures (b), (c) and (d) of (Ⅱ) show that only the complete MNSNet 
can identify the light spot interference and correctly perceive the polyp area. Figure (a) 
in (III) has mirror reflection interference in the lower left corner and multiple white 
intestinal impurities in the right half. Figures (b) and (c) in (II) show that MNSNet 
without the PBNS module or PDNS module cannot handle these interferences correctly. 
Figure (d) in (III) shows that the complete MNSNet can correctly locate the polyp and 
segment the complete polyp tissue. Figure (a) in (IV) has blurred intestinal peristalsis 
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imaging in the left half. Figures (b) and (c) in (IV) show that MNSNet without the 
PBNS module or PDNS module misjudges the blurred area as polyp tissue. Figure (d) 
in (IV) shows that the complete MNSNet can segment the polyp area well. In the feature 
extraction stage, the PBNS module helps the CNN branch focus on the polyp target 
area based on the self-attention mechanism, reduces the sensitivity of MNSNet to back-
ground noise, and improves the robustness of MNSNet. In the semantic fusion stage, 
the PDNS module enriches the information representation of the model based on the 
dynamic kernel, improves the flexibility of the fusion method, and enables MNSNet to 
effectively handle the complex and changeable noise interference in the polyp image. 
From the ablation experiment results, it can be seen that the PBNS module and the 
PDNS module improve the segmentation effect of MNSNet and are necessary. 

 
Fig. 7. Qualitative comparison results of ablation experiments with the PBNS module and 

PDNS module. 

4 Conclusion 

MNSNet is proposed to improve the anti-noise interference ability of polyp segmenta-
tion methods, thereby improving the segmentation accuracy of polyp endoscopic im-
ages. Firstly, parallel CNN branches and Transformer branches are constructed to ex-
tract polyp features respectively, which improves the global and local information ac-
quisition capabilities of the network, thereby improving the robustness of the network. 
Secondly, in the polyp feature extraction stage, a polyp background noise removal mod-
ule is designed based on the self-attention mechanism, which increases the network's 
attention to the polyp target area and improves the network's anti-interference ability to 
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background noise. Finally, in the polyp semantic fusion stage, a polyp noise dynamic 
suppression module is designed based on the dynamic kernel method, and a variable 
convolution kernel is dynamically generated according to the input data noise infor-
mation, which improves the flexibility of the semantic fusion method and thereby im-
proves the network's adaptability to noise interference of various types of polyp images. 
Comparative experiments are conducted with 5 representative polyp segmentation 
methods under 5 benchmark polyp segmentation datasets to evaluate the polyp segmen-
tation performance of MNSNet. Compared with the suboptimal method Meta-Polyp, 
MNSNet improves the mDice and mIoU indicators by 2.2% and 2.0% respectively un-
der the ETIS dataset. Experimental results show that CSENet has the best polyp seg-
mentation performance, combining effectiveness and superiority. 
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