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Abstract. In this paper, the inverted pendulum is controlled by QUBE
DC motor, and the motor inverted pendulum system is identified when
the sinusoidal signal is input. However, there is a large error when the
angle of the pendulum is pre-identified by N4SID algorithm. Therefore,
this paper designs a multi strategy optimization simulated annealing par-
ticle swarm optimization algorithm(MSSA-PSO), which can accurately
identify the complex system with sinusoidal input signal. In the identi-
fication experiments of sinusoidal signals with multiple frequencies and
amplitudes, this paper found that the algorithm performs relatively best
at a frequency of 8 rad/s. Moreover, at a frequency of 8 rad/s, the al-
gorithm can quickly reduce the error to 1.69% within 100 generations.
Finally, based on the hardware model identified by particle swarm opti-
mization, this paper designs an explicit MPC(eMPC) controller to con-
trol the inverted pendulum, and tests the constraint processing and anti
disturbance performance of the system under the voltage pulse interfer-
ence with different duty cycles, which realizes the inverted pendulum
balance and has robustness under the interference.

Keywords: Inverted pendulum - Simulated annealing - Particle swarm
optimization - Constraint processing - MPC control .

1 Introduction

The inverted pendulum problem is one of the most important problems in con-
trol theory and has been studied excessively in control literatures [1]. Because
of its instability and complex dynamic characteristics, the system becomes an
ideal platform to test the effect of control algorithm. With the development of
control theory, the system identification and control algorithm design of inverted
pendulum system have become the research focus. However, the highly nonlinear
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and unstable characteristics of inverted pendulum put forward higher require-
ments for system identification technology, which requires more refined methods
to accurately capture its dynamic behavior [2].

Many scholars have completed innovations in system identification and swing
stabilization control based on QUBE-Servo 2, such as nonlinear parameter iden-
tification based on variational method based on this platform [3]; Stable rotary
pendulum fuzzy control based on QUBE motor [4]; Reinforce learning control
based on a data-efficient method [5]; Event driven methods that can identify and
suppress disturbances based on the platform [6], etc.

Based on the fact that system identification can be transformed into parame-
ter identification, particle swarm optimization algorithm is widely used because
of its convergence and simplicity. For instance, power system [7], Impulse re-
sponse system [8] and robotic system [9]. Similarly, particle swarm optimization
algorithm is also widely used in the research of inverted pendulum system [10,11].

Model predictive control (MPC) is a modern optimization-based control
method, also called receding horizon control [12]. MPC is efficient due to some
intrinsic advantages: (i) direct consideration of state and input constraints; (ii)
applicability to general nonlinear MIMO systems; (iii) optimization of general
performance criteria [13]. MPC has been successfully applied in many fields, such
as vehicle control [14] and robot control [15]. Previously, many researchers used
MPC to deal with the constraints and control the inverted pendulum system.
For instance, a time-varying model predictive control framework for uncertain
and under-actuated mechanical systems is designed in [16]. In [17], the stability
of soft-constrained MPC is addressed based on simulations of inverted pendu-
lums. In addition, in the display MPC method proposed by [18], the problem
of real-time control of MPC is solved, and a rigorous and fast MPC method is
given.

In Section 2 of this paper, the mathematical model of QUBE motor in-
verted pendulum system is derived theoretically. Then in Section 3, the simu-
lated annealing PSO identification algorithm and its optimization strategies are
designed to identify the mathematical and physical model of inverted pendulum
system; Finally, based on the identification results of inverted pendulum phys-
ical model in Section 3, the author realized the pendulum stabilization control
and anti-interference experiment of inverted pendulum system based on explicit

MPC(eMPC) Method in Section 4.
2 Inverted Pendulum Modeling

The rotating shaft of inverted pendulum system is connected to is driven by the
QUBE-servo system. When the pendulum is vertically downward, the pendulum
angle a = 0, and increases positively with counterclockwise rotation. See Table
1 for system parameters.

The Lagrangian of the pendulum system is the total kinetic energy of the
rotating arm and the rotating pendulum minus the total potential energy of the
rotating arm and the rotating pendulum. The two generalized coordinates in
the system are connecting rod angle 6 and pendulum angle « . After several
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Fig.1: The QUBE-Servo2 inverted pendulum system
Table 1: QUBE-Servo System Parameter

Symbol | Quantity Numerical Value
my rotating arm mass |0.095 kg
L, rotating arm length | 0.085 m
myp pendulum mass 0.024 kg
Ly pendulum length 0.129 m

differential calculations and linearization of the nonlinear motion equation near
the working point, the linear motion equation of the inverted pendulum is:

.. 1 1 1 .
0= J—T[—(ZmpLZQ) +Jp) D0+ 5myLy Ly Dy
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+ =m2L2L,go + (Zmpo) + Jp)7]
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Where:

1
Jr = Jym, L + J,.J, + Zerpo,

1 2 1 2
JT = EmTLT, Jp = Empr
A continuous linear space state equation is established, where u is the control
input (DC motor input torque). For a rotary pendulum system, the status and

output are defined as:
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3 Identification Algorithm Design

Remove the load disc on the QUBE motor and place a single arm swing on the
upper end of the motor.

The Simulink simulation model is built as follows, and the 0 port of HIL read
encoder timebase is used to collect the motor angle 6 data, use 1 port to collect
swing rod angle o data.
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Fig.2: Data acquisition model for Simulink simulation of inverted pendulum
System

3.1 N4SID Pre-Identification

For pre-identification, this article wrote the N4SID code and adjust the algorithm
parameters to make the identification of physical model data 6 as accurate as
possible. The identification of § and « is shown in Fig.3.

y(k) and yT(K)

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
time sequence k time sequence k

Fig. 3: Identification effect of N4SID on the physical model of inverted pendulum
(left: 0; Right: «)
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It can be seen that the N4SID method can be effectively implemented 6 ,
but in fitting « there is a large deviation. Therefore, we need to design a more
accurate algorithm to identify the system.

3.2 Adaptive SA-PSO identification algorithm

Different from the subspace method, the system identification of sinusoidal sig-
nal response data is regarded as an optimization problem, that is, to find the
optimal estimation parameters. Based on this, the author designed an improved
least square parameter estimation based on adaptive simulated annealing parti-
cle swarm optimization algorithm (SA-PSO) to identify the system.

Discretization and Data Processing Considering the discontinuity of sam-
pling data, the original state space equation model is discretized. Discretization
is replaced by the difference formula.After further arrangement, the least square
form of the discrete model can be obtained.

a(k)

o(k + 1)

Vin a1 a2 a3 a4 as 0 G(k + 2)
|: :| - [aﬁ ay 0 asg ag aio Oé(k)

alk+1)

a(k+2)

The calculated theoretical values of each parameter are shown in Table 2.

Table 2: Theoretical Calculated Values of Parameters

ai a2 as a4 as

4877.3 -9904.7 |5027.4 46.416 -49.42

ae ar as a9 a10
-150.1049 | 150.1049 [ -5179.4921 | 10250.7117 | -5086.5424

Adaptive SA-PSO Algorithm Framework PSO algorithm starts from the
random solution and finds the optimal solution through iteration; Evaluate the
quality of solution by fitness. The basic parameters of PSO algorithm are shown
in Table 4.

In the process of updating particle speed and position, in order to avoid
falling into local optimal solution, random operators r; and ry are added to
adjust (r; and ry are random numbers between 0 1). The generation formula of
particle speed and position is as follows:

k k k k
V; g+1 :wVi g+017“1(pig _Xig)

(6)
+02r2(Bestng — Xikg)
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Table 3: Basic Parameters of PSO Algorithm

G Number of Iterations
X(7) The ith particle position
V(4) Velocity of the ith particle
J(7) Current cost function value of the ith particle
PB(3) Local optimal position of the ith particle
BestS Global optimal location
w(t) Inertia weight coefficient of iteration I
c1(2) and c2(7) | Self and social learning factor
T(3) Temperature
P;(k) The probability of the k-th iteration of the ith particle accept-
ing the new solution
kg Current evolutionary algebra
P(i) Historical optimal extremum of the ith particle
XZ_’€9+1 _ Xzfg + V;kg-‘rl (7>

In particle swarm optimization algorithm, particles will keep approaching the
optimal solution, but due to the speed and position update strategy of particles,
particles are easy to fall into the vicinity of the local optimal solution, which
makes it difficult for the algorithm to jump out of the local optimal solution.
Based on the principle of solid-state annealing, simulated annealing algorithm
generates new solutions through random disturbance, and accepts or rejects
new solutions, which can jump out of the local optimal solution and find the
global optimal solution in the search process. The combination of adaptive PSO
and simulated annealing algorithm can improve the global search ability of the
algorithm.

Based on the above description of simulated annealing strategy and PSO
algorithm, the following SA-PSO algorithm flow can be obtained as Fig.4.

Adaptive Parameter Adjustment Strategy The key of particle swarm op-
timization is setting w, ¢; and co. Compared with fixed parameters, adaptive
parameter adjustment can change parameters continuously with the optimiza-
tion process to better adapt to different optimization stages, so as to improve
the performance and accuracy of the model.

Through adaptive parameter adjustment, the global search is preferred at
the initial stage of iteration, and the local search is gradually preferred as the
iteration proceeds. This paper uses hyperbolic tangent curve to control inertia
weight coefficient w and adopts the following adaptive parameter adjustment
strategy:

w(1) = (Wimaz + Wmin)/2 + tanh(—4 + 8x
(G - Z)/G) : (Wmam - Wmin)/2
1 (Z) = Clmazx — Z'(Clmaac - Clmin)/G (9)

Co (l) = C2min + i(CQmaz - CQmin)/G (10)

(8)
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Start: Initialization

Update ¥ (7) and
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Fig.4: SA-PSO algorithm flow

The basic parameters of adaptive parameter adjustment and the parameter set-
tings based on references and experiments are shown in the Table 4.

Table 4: Parameters and Settings of Adaptive Parameter Adjustment

Range of inertia weight coefficient w |[0.4,0.95]
Range of self learning factor c; [1.25,2.5]
Range of social learning factor co [1.25,2.5]

At the beginning of the search, w has larger value, ¢;>co, the algorithm tends
to global search; With the generation selection, w and the difference between c;
and cy decreases gradually, and then c¢; <cg, which makes the algorithm tend to
local search.

3.3 Identification Results

Identification of Multi Frequency Signals Set the input signal amplitude
to 1V and angular frequencies to 4, 6, 8, 12, and 16 (rad/s), respectively. Import
the corresponding data to identify the physical model, record the identification
effect diagram and error parameters. The vertical axis of the following image
represents the voltage value (V), and the horizontal axis represents the time
(s). The upward trend in the iteration curve is a visualization of the simulated
annealing process.
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(a) w=4rad/s (b) w=6rad/s
Fig. 5: Input signal and identification parameter fitting effect
‘
(a) w=8rad/s (b) w=12rad/s

Fig. 6: Input signal and identification parameter fitting effect
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Fig. 8: Typical cost function
variation diagram with am-
plitude of 1V and angular
frequency of 8rad/s

Fig.7: Input signal and
identification parameter fit-
ting effect(w=16rad/s)

In order to quantify the identification effect and its error, this article defines
the percentage error of the model as the ratio of the root mean square error
(RMSE) of the model to the absolute value of the average amplitude of the
identification signal, which is given by the following formula:

RMSE  /mse
e = 2 = 2 (11)

According to the graphs and Table 5, as the input signal frequency continues to
increase, the identification effect shows a trend of first improving and then deteri-
orating. The simulation results show that the identification effect of the inverted
pendulum system is optimal when the angular frequency is around 8 rad/s. At
the same time, according to the cost function value variation graph, when the
number of iterations reaches about 70, the sum of squared errors reaches less
than 1.
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Table 5: Identification Error Parameters for Input Signals with Different Angular
Frequencies (Unit Omitted)

Input J R-square |eg
A=1w=4 8.6641 1.0033 9.31%
A=1w=6 1.7419 0.9940 4.17%
A=1w=238 0.2874 0.9974 1.69%
A=1w=12 ]0.7190 1.0016 2.68%
A=1w=16 |18.0248 1.0312 13.43%

Based on the identification results at a relatively optimal identification fre-
quency of 8 rad/s, the parameters of the physical model of the system can be
obtained as shown in Table 6.

Table 6: Hardware System Parameters Based on MSSA-PSO Identification

ai a2 as a4 as
4944 -9928 4985 -25 21

ae ar as a9 a10
-43 43 -5087 10146 -5064

Effectiveness of Optimization Strategies In order to study the impact of
optimization strategies such as Nonlinear Weight (NW), Adaptive Linear Learn-
ing (LL), and Simulated Annealing (SA) on system identification performance,
the optimal input signal (amplitude 1V, angular frequency 8rad/s) was selected
for the following simulation experiments. This article uses basic PSO algorithm,
PSO algorithm of this article with removal of a certain optimization strategy, and
multi strategy simulated annealing PSO algorithm (MSSA-PSO) to compare the
convergence and accuracy of the algorithms. The author mainly compares the
number of iterations (N) when the cost function value of system identification
decreases to less than 1 and other identification error indicators.

Table 7: Convergence Speed and Error Indicators for System Identification Using
Different Algorithms

Algorithm N J R- ek
square

PSO > 200 9.1101 0.8677 9.54%

LLSA-PSO > 200 7.7571 0.8815 |8.81%

NWSA-PSO 136 0.4846 1.0025 2.20%

MS-PSO > 200 1.0107 0.9754 3.18%

MSSA-PSO 125 0.1962 1.0002 1.40%

According to Table 7, both NWSA-PSO and MSSA-PSO can reach the con-
vergence standard (N<1) within 150 iterations, and the identification effect is
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splendid. The convergence rate of MSSA-PSO is the fastest and the percentage
error is the smallest, which is less than 1.5%.

In order to further demonstrate the effectiveness of the algorithm design in this
paper, we used this method and three algorithms to remove a certain strategy for
the signal with a frequency of 8 rad/s for 20 independent repeated experiments,
and drew the average iterative curve of 200 generations under the logarithmic
coordinate logig (J2) (Jz is the value of the surrogate function). It can be seen
from figure 9 that the NW strategy and SA strategy have a great effect on
improving the accuracy of the algorithm, while the LL strategy has little effect
on the accuracy of the algorithm, but it can accelerate the convergence speed of
the algorithm.

LLSA
NWSA

MSSA

Cost Funcion J,

0 50 100 150 200
Iterations

Fig.9: Comparison of average iterative curve of algorithms

4 Explicit MPC Control

In order to verify that the identified model can be used to control the rotating
inverted pendulum, we used the explicit MPC method to control the rotating
inverted pendulum on the QUBE Servo 2 experimental equipment.

Explicit MPC was first proposed by Bemporad et al., which is an efficient
method that is similar to the lookup table approach which can be used in embed-
ded system or Real-time dynamic system when systems are under constraints.
In this section, first we review the traditional MPC strategies . Then we intro-
duce the explicit MPC method. Finally we represent the explicit MPC controller
regulating effect on our identified system by PSO algorithm.

4.1 Model Predictive Control

Model Predictive Control (MPC) is able to handle constraints and multi-variable
systems effectively by using receding horizon strategy. Consider that a discrete-
time linear time invariant (LTT) system subjects to the following constraints:

x(k) € X,u(k) el (12)

where (k) € R™ is the state of system, u(k) € R™ is the input of system and
y(k) € R is the output of system. X and U are the constraint sets of state and
input, respectively.
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The MPC optimization problem at time k£ can be formulated as:

-1

N
. T . .
min z(k+1+1)Qx(k+i+1
w(k|k),y...,;u(k+N—1|k) Z; ( JQa( )

7=

+u® (k4 i) Ru(k + 1)

s.t. (k4 i+ 1|k) = Az(k + ilk) + Bu(k + i|k)

where N is the prediction horizon, ) and R are positive semi-definite weighting
matrices.

4.2 Explicit Model Predictive Control

The idea of explicite MPC is to beforehand solve the optimization problem (13)
for all z € X. We wish to derive a division of X where we have explicit controller
design formulation in all division ,which can be represented as
le +91 if Hl.’E S kl
u(zx) = (14)
F]M='17+9M lfHM’I < k’M

By substituting z(k +i|k) = Alz(k) + Z;;E AV Bu(k +1i—1— j7), equation (13)
can be rewritten as

V(a(k)) = %xT(k)Ya:(k) + m[}n{%UTHU + (k) FU) (15)

st. GU <W + Ex(k)
Define

22U+ H 'FTa(k) (16)

Completing square in equation(15), we obtain the equivalent optimization
problem

V. (x(k)) = min %zTHz (17)

st. Gz < W + Sx(k)

where S £ E4+GH'FT and V. (z(k)) = V(z(k)) — 32(k)T(Y = FH ' FT)2(k).

Theorem? in [18] has shown that when the rows of G are linearly independet.
Let C'Ry be the set of all vectors z, for which such a combination is active at the
optimun. Then the optimal z and the associated vector of Lagrange multipliers

A are uniquely defined affine functions of x over C'Ry.
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_ For Lagrange multipliers X\ corresponding to active constrains, —GH " 1GT A\—
W — Sz = 0,and therefore

A= —(GH'GTY"Y(W + Sz) (18)
z=H 'GT(GH'GT)"Y(W + Sx) (19)

Note that z is an affine function of x.

4.3 Control Results

We employed the Explicit Multi-Parametric Solution provided by the YALMIP
library to implement Explicit Model Predictive Control for the inverted pen-
dulum system in MATLAB. To test the robustness of system, we apply a pe-
riodic pulse signal with an amplitude of 1V to the input port of the control
system as disturbance, while the duty cycle of this pulse signal ranging from
5% ~ 12%. The real-time Control parameter are setted as followed: The sample
time Ty = 0.002s, the prediction horizon is selected as N = 4. Input voltage u
subjects to —10V < u < 10V.

At inital time the derivative of # and « are 0, so that we could derive the
state-space partition of 8 and o« when 0 =0and & =0. Fig.10 and Fig.11 show
optimizer and value function of w.r.t. # and « at initial time.

Fig.10: Optimizer State-space Fig.11: Value Function State-
partition space partition

Fig.10 shows how explicit mpc handles input constraints for —10 < » < 10 and
Fig.11 is a Lyapunov function like value function which garentees the stability
of this system.

In the disturbance experiments, we apply periodic pulse disturbances with
duty cycles of 0.05, 0.08, 0.1, and 0.12 to the input port (the green curve in the
figure on the left ), and measure the corresponding system responses (the red
curve (a) and blue curve(f)) as shown in the following figures (12-15).

From Fig.(12-15), we can see that when a pulse disturbance is applied to the
input, the system enters an uncontrolled state. During this time, the signal solved
by eMPC is covered by the pulse disturbance, causing the system to rapidly
deviate from the equilibrium state. After the pulse ends, the eMPC control
input resumes.When the duty cycle is larger than 0.08, the input is constrained
and limited to 10 by the MPC. The system’s a and 6 states rapidly recover to
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Input State Variable
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Time (s) Time (s)
(a) Control input (b) System state quantity

Fig.12: Control input and system state quantity under pulse disturbance with
duty cycle of 0.05

State Variable

Pulse Signal
-==-u
.

Time (s) Time (s)
(a) Control input (b) System state quantity

Fig.13: Control input and system state quantity under pulse disturbance with
duty cycle of 0.08

State Variable

Time (s) Time (s)
(a) Control input (b) System state quantity

Fig. 14: Control input and system state quantity under pulse disturbance with
duty cycle of 0.10

equilibrium point 0 after the MPC solved signal is applied, indicating the system
returns to a stable state.

To better illustrate the convergence region of our identified-based MPC,
record the maximum deviation angle of o from which the system is still able
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Input State Variable

S

Value

e
i

Time (s) Time (s)
(a) Control input (b) System state quantity
Fig. 15: Control input and system state quantity under pulse disturbance with
duty cycle of 0.12

to recover to the equilibrium state after the disturbance. Results are shown in
Table 8.

Table 8: Angle variation range of « under different degrees of disturbance

Duty Cycle of Pulse Range of «(°)
p—0.05 [1.40, 2.99]
p=0.08 [-4.74, 6.88]
p=0.1 [-8.42, 11.97]
p—0.12 [-19.69, 19.34]

5 Conclusion
This article designs identification algorithms and control methods based on the

QUBE motor inverted pendulum experimental platform.

A multi strategy optimized simulated annealing PSO algorithm (MSSA-PSO)
is designed to achieve high-precision identification of the inverted pendulum
system, and the relatively optimal identification signal frequency is given. Sub-
sequently, based on the hardware system model identified by MSSA-PSO, this
paper adopts a highly model dependent MPC method to stabilize the inverted
pendulum, and solves the real-time problem of MPC by introducing the ex-
plicit MPC (eMPC) strategy. The pendulum has strong anti-interference ability
while operating stably. Through the comprehensive design of identification con-
trol experiments, this paper verifies the feasibility and efficiency of the proposed
identification model and corresponding control methods.
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