
Performance Evaluation of a Combined
Convolutional AutoEncoder and Image

Recognition Model for Large Scale Images

Takuho Myojin1[0009−0000−1759−5539] and
Yukinobu Hoshino2[0000−0001−5285−8007]

185 Miyanokuchi, Tosayamada, Kami City, Kochi 782-8502, JAPAN

Abstract. There is a need to introduce remote disaster monitoring cam-
era systems that utilize AI technology. This is especially the point where
disasters have become larger and more frequent in recent years. The
challenge to realize this system is to acquire images with cameras and to
transmit this information stably and quickly. I then turned my attention
to the CAE(Convolutional AutoEncoder). The reason for using CAE was
to reduce the amount of data compared to images captured by cameras
and to improve security. In this paper, we use this CAE to design an AI
model that integrates an image recognition model for image restoration
verification and disaster detection, and verify its performance.
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1 Introduction

In recent years, natural disasters have occurred frequently around the world.
In particular, damage from external flooding in dams and rivers has been occur-
ring on a large scale around the world. As a countermeasure, it is necessary to
provide quick and stable information in the event of a disaster. In doing so, it
is necessary to introduce a surveillance camera system with high security built
in. Furthermore, the low communication speed environment in mountainous ar-
eas and the installation of the system must be met. Our laboratory has been
successful in using AI to predict floods and heavy rainfall in reservoir and river
areas in Sri Lanka[1, 2], and the reason for the success of AI prediction is the use
of a neural network in images called a CNN (Convolutional Neural Network).
CNN[3] is an innovative technology in the field of machine learning and com-
puter vision. It had achieved remarkable results, especially in tasks such as image
recognition, object detection, and face recognition. In addition, image size can
be compressed by setting the necessary parameters. Furthermore, they have also
focused on implementing neural networks such as CNNs in FPGAs; by imple-
menting them in FPGAs, AI technology can be incorporated into IoT devices.
By integrating these technologies, it is possible to implement the AI technology
surveillance camera system mentioned earlier.
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1.1 Research Purpose

Based on the results of the laboratory, this paper aims to develop and validate
an AI image compression technique using CNN for a remote surveillance cam-
era system for disaster prevention monitoring, as shown in Figure 1. AI image
compression can compress the size of the image while maintaining the necessary
information in the image and transmit it. In addition, image compression re-
duces the amount of information required for communication, allowing for quick
and stable transmission. The next step is to use AI magnification techniques to
maintain the original image and classify whether a disaster has occurred. In this
paper, we experimented with Figure 1 once all on software. In doing so, in the
AI image compression and restoration, the experiment was conducted to see if
the image could be compressed until it could be restored, as well as to take into
account the accuracy of the image classification.

Fig. 1. Overall Process

1.2 Structure of this paper

The contents of this paper are as follows. Chapter 2 describes the necessary
AI technology and image processing used for the AI model. Chapter 3 describes
the details of the experiment. Chapter 4 describes the experimental results and
discussion. After that, we discuss future research topics and prospects.
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2 About the AI technology used

This chapter describes the basic technology of the AI model used in the ex-
periment.

2.1 CNN(Convolutional Neural Network)

Convolutional Neural Network (CNN) is a technique first published in the
literature [3]. Before the convolutional layer was proposed, image processing
was done by a person deciding the information extraction filters. Convolutional
layers are filters that extract information by filter, stride and padding. The
advantage of the convolution layer is that spatially close pixels have similar values
and features are extracted by loosely coupling while sharing parameters without
erasing image characteristics that are closely related between each RGB channel.
Loosely coupling allows, in particular, to ignore the relationship between distant
pixels. Below is an equation showing the change in output size of the CNN.

2.2 Output size of CNN

The output size Ho × Wo of the convolution layer is given by Equation (1)
when the image input size is Hi × Wi, filter size is kh × kw, stride is sh × sw,
and padding is ph × pw. The output size can be adjusted by adjusting the filter
size, stride and padding.

Ho =

⌊
Hi + 2ph − kh

sh

⌋
+ 1 Wo =

⌊
Wi + 2pw − kw

sw

⌋
+ 1 (1)

2.3 Residual Block

Residual Block is a specific structure of ResNet from the literature [4] that
was noted for its ability to effectively train very deep networks. While ordinary
deep networks are prone to gradient loss and gradient explosion problems as
more layers are added, these problems can be mitigated by introducing ResNet’s
Residual Block. In a residual block, there is a shortcut path (skip connection) as
shown in the Figure 2, in which the input is directly added to the output. This
structure allows the model to skip layers and propagate information, facilitating
the learning of deep networks.

2.4 Deconvolution

Deconvolution is used in the literature [5] to restore an image whose dimen-
sions have been compressed by convolution to its original input size by the inverse
operation of a convolutional neural network. Deconvolution is important when
deconvolution is needed at each layer in the network because it performs the
reverse of the convolution operation within the convolutional neural network.
This is the technique used in image restoration and image generation, such as
AutoEncoder and GANs (Generative Adversarial Networks).
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Fig. 2. Residual Block Process

2.5 AutoEncoder

AutoEncoder is an image restoration proposed in the literature [6], which
reduces the dimensionality by forming a number of layers, one layer being a
stack-trained Boltzmann machine with a single feature detector. Then, a config-
uration was proposed to expand the Boltzmann machine to restore the reduced
dimensionality. In general, AutoEncoder is composed of Encoder and Decoder
parts as shown in : Figure 3. In Encoder, the dimension of the input data is
gradually reduced; in Decoder, the gradually reduced dimension is returned to
the input dimension. Therefore, AutoEncoder is a neural network architecture
that inputs an image to Encoder, compresses the dimension, and then restores
the image back to the input image in Decoder. In this study, we focused on con-
volutional AutoEncoder, which adapts CNN for Encoder and Deconvolution for
Decoder. Convolutional AutoEncoder is essential for learning biologically plausi-
ble features. Initializing the CNN with filters from the trained CAE stack yields
superior performance on the number recognition (MNIST) and object recogni-
tion (CIFAR10) benchmarks[7].

Fig. 3. AutoEncoder Process
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3 Experimental Details

The dataset used in the experiment was a CIFAR10 dataset unrelated to the
disaster, compressed into three classes (cars, cats, and birds) and the size of one
image was increased from 32 x 32 to 320 x 320. The reason is that the images
can be compressed more by using existing datasets to focus on AutoEncoder
restored images and by increasing the image size as much as possible. To repro-
duce the same model as in the figure 1, we created an image restoration model
using AutoEncoder and an image recognition model using Residual Block. The
structure of these models is described in Tables 1, 2, 3, and 4. the first model
created is in Tables 1 and 2. the second model is in Tables 3 and 4. Conv stands
for CNN and describes the stride and kernel size at that time. Then, the data
size after the processing of Layer and what kind of processing was done after the
CNN. function is described. Similarly, Pool, Deconv, and Upsampling are shown
as well.

Table 1 shows the structure of the AutoEncoder for the first model: in the
Encoder, Conv1 doubles the number of channels by CNN, but halves the im-
age size in height and width. In the Decoder, Upsampling Bilinear increases the
image size by 2 pixels in each direction. Finally, the image is enlarged to the orig-
inal size by Deconvolution(DeConv1). The evaluation function of AutoEncoder
is shown in Equation (2) below. In equation (2), the cross-entropy error between
the input and output images is measured for each channel and the average is
calculated.

Before showing the structure of the image recognition model, the structure
of the Residual Block is shown in Table 5. In Table 5, the number of channels is
doubled in Conv1 and Conv3. In Conv2, the number of channels is doubled and
the image size is reduced to half. In Skip Connection, the number of channels is
increased by a factor of 4 and the image size is reduced by half. However, this was
only activated when the stride was 2 x 2. Table 2 shows the image recognition
structure of the first model: with the output of Encoder as input, the number
of channels was changed by Conv1 and Pool1 to 8, a power of 2, and the image
size was changed to 100 x 100. Then, 16 layers of Residual Block were designed.
Finally, we compressed the image to the number of classes by Linear of all the
joins.

In Table 3, the structure of AutoEncoder for the second model is shown.
Initially, Conv1 was set to halve the image size horizontally and vertically and
double the number of channels. Then, Pool1 reduces the image size by 2 pixels
in height and width. Conv2 also doubles the number of channels in the CNN,
but the image size is reduced to half the height and width. In Decoder, Upsam-
pling Bilinear increases the image size by 2 pixels in each direction, and finally
Deconvolution increases the image size by a factor of 2. Then, Upsampling Bilin-
ear (Upsampling Bilinear2) and DeConvolution (DeConv2) were combined once
again to enlarge the image to its original size. As in Table 1, the evaluation func-
tion for AutoEncoder was set to Equation (2) below. Table 4 shows the image
recognition structure of the first model: with the output of Encoder as input, the
number of channels was changed by Conv1 and Pool1 to 16, a power of 2, and
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the image size was changed to 40 x 40. Then, 16 layers of Residual Block were
designed. Finally, we compressed the image to the number of classes by Linear
of all the joins.

AutoEncoder measured Train Loss and Test Loss. Then, the output and
input images were checked and the similarity of each channel was measured.
The formula for the similarity of each channel is Equation (3) below. Equation
(3) shows the formula for the similarity in each channel between the restored
image and the input image. For the image recognition model, we measured Train
Loss, Test Loss, Train Accuracy, Test Accuracy, and the actual correct response
rate.

Lossmean = − 1

NHWC

∑
i,j,k,l

{xi,j,k,l log(yi,j,k,l)+(1−xi,j,k,l) log(1−yi,j,k,l)} (2)

similarityi =
image1i · image2i

∥image1i∥∥image2i∥
(3)

Table 1. AutoEncoder Design 1

Layer Kernel Stride Output Function
Input - - (15, 3, 320, 320) -
Conv1 (3, 3) (2, 2) (15, 6, 160, 160) ReLU
Pool1 (4, 4) (1, 1) (15, 6, 158, 158) Max, Instance Norm

Upsampling Bilinear1 (3, 3) (2, 2) (15, 6, 160, 160) ReLU
DeConv1 (3, 3) (2, 2) (15, 3, 320, 320) Max, Instance Norm
Output - - (15, 3, 320, 320) -

4 Experimental Results and Discussion

4.1 First model Result and Discussion

Initially, the AutoEncoder results for the first model are shown in Figure 4 and
Table 1. Next, Figure 4 compares the input and output images. The rightmost
image is the 320 x 320 input image, the center image is the Encoder output image
(158 x 158), and the leftmost image is the restored image. The restored image
shows that the color image was not restored. However, it was confirmed that the
shape of the target object in the image was captured even in the grayscale image.
Finally, Table 6 shows the similarity between the input and output images for
each channel, and all similarities are greater than about 0.80. Therefore, despite
the high similarity, the black-and-white image was recovered because the values
of each channel at the same position in the image were very close. This is because
the nature of images is such that if the values of each RGB channel are close, the
image will be grayscale. Therefore, we believe that the AutoEncoder we designed
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Table 2. Classification Design 1

Layer Kernel Stride Output Function
Input - - (15, 6, 158, 158) -
Conv1 (3, 3) (1, 1) (15, 8, 158, 158) ReLU
Pool1 (59, 59) (1, 1) (15, 8, 100, 100) Max, Batch Norm

Residual Block1 - (2, 2) (15, 32, 50, 50) -
Residual Block2 - (1, 1) (15, 32, 50, 50) -
Residual Block3 - (1, 1) (15, 32, 50, 50) -
Residual Block4 - (2, 2) (15, 128, 25, 25) -
Residual Block5 - (1, 1) (15, 128, 25, 25) -
Residual Block6 - (1, 1) (15, 128, 25, 25) -
Residual Block7 - (1, 1) (15, 128, 25, 25) -
Residual Block8 - (2, 2) (15, 512, 12, 12) -
Residual Block9 - (1, 1) (15, 512, 12, 12) -
Residual Block10 - (1, 1) (15, 512, 12, 12) -
Residual Block11 - (1, 1) (15, 512, 12, 12) -
Residual Block12 - (1, 1) (15, 512, 12, 12) -
Residual Block13 - (1, 1) (15, 512, 12, 12) -
Residual Block14 - (2, 2) (15, 2048, 6, 6) -
Residual Block15 - (1, 1) (15, 2048, 6, 6) -
Residual Block16 - (1, 1) (15, 2048, 6, 6) -

Linear1 - - (15, 73728) -
Linear2 - - (15, 3) -
Output - - (15, 3) -

Table 3. AutoEncoder Design 2

Layer Kernel Stride Output Function
Input - - (15, 3, 320, 320) -
Conv1 (3, 3) (2, 2) (15, 6, 160, 160) ReLU
Pool1 (4, 4) (1, 1) (15, 6, 158, 158) Max, Instance Norm
Conv2 (3, 3) (2, 2) (15, 12, 79, 79) ReLU
Pool2 (4, 4) (1, 1) (15, 12, 77, 77) Max, Instance Norm

Upsampling1 - - (15, 12, 79, 79) ReLU
Deconv1 (3, 3) (2, 2) (15, 6, 158, 158) Instance Norm

Upsampling2 - - (15, 6, 160, 160) ReLU
DeConv2 (3, 3) (2, 2) (15, 3, 320, 320) Instance Norm
Output - - (15, 3, 320, 320) -
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Table 4. Classification Design 2

Layer Kernel Stride Output Function
Input - - (15, 12, 77, 77) -
Conv1 (3, 3) (1, 1) (15, 16, 77, 77) ReLU
Pool1 (38, 38) (1, 1) (15, 16, 40, 40) Max, Batch Norm

Residual Block1 - (2, 2) (15, 64, 20, 20) -
Residual Block2 - (1, 1) (15, 64, 20, 20) -
Residual Block3 - (1, 1) (15, 64, 20, 20) -
Residual Block4 - (2, 2) (15, 256, 10, 10) -
Residual Block5 - (1, 1) (15, 256, 10, 10) -
Residual Block6 - (1, 1) (15, 256, 10, 10) -
Residual Block7 - (1, 1) (15, 256, 10, 10) -
Residual Block8 - (2, 2) (15, 1024, 5, 5) -
Residual Block9 - (1, 1) (15, 1024, 5, 5) -
Residual Block10 - (1, 1) (15, 1024, 5, 5) -
Residual Block11 - (1, 1) (15, 1024, 5, 5) -
Residual Block12 - (1, 1) (15, 1024, 5, 5) -
Residual Block13 - (1, 1) (15, 1024, 5, 5) -
Residual Block14 - (2, 2) (15, 4096, 2, 2) -
Residual Block15 - (1, 1) (15, 4096, 2, 2) -
Residual Block16 - (1, 1) (15, 4096, 2, 2) -

Linear1 - - (15, 16384) -
Linear2 - - (15, 3) -
Output - - (15, 3) -

Table 5. Residual Block Design

Layer Kernel Stride Output Function
Input - - (N, C, H, W) -
Conv1 (1, 1) (1, 1) (N, 2C, H, W) -

Batch Norm1 - - (N, 2C, H, W) ReLU
Conv2 (1, 1) (s, s) (N, 2C, H / s, W / s) -

Batch Norm2 - - (N, 2C, H / s, W / s) ReLU
Conv3 (1, 1) (1, 1) (N, 4C, H / s, W / s) -

Batch Norm3 - - (N, 4C, H / s, W / s) ReLU
Skip Conv - - (N, 4C, H / s, W / s) -

Skip Batch Norm - - (N, 4C, H / s, W / s) ReLU
Output - - (N, 4C, H / s, W / s) -
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this time produces a grayscale image because the values of each channel at the
same position in the image are very close.

Next, the results of image recognition for the first model are shown in Fig-
ures 5 and 6. Figure 5 shows the change in Loss[-] per learning. The vertical axis
is Loss[-] and the horizontal axis is the number of training’s. It was confirmed
that Train Loss and Test Loss increased significantly when the number of train-
ing sessions was around the 5th training session, and then gradually decreased.
The fact that Loss increases and then decreases significantly once suggests that
learning is being performed appropriately. Figure 6 shows the change in Accu-
racy[%] per learning. The vertical axis is Accuracy[%] and the horizontal axis
is the number of learning. As the number of training sessions increased, both
Train Accuracy[%] and Test Accuracy[%] repeatedly decreased and increased,
and finally Train Accuracy and Test Accuracy[%] were calculated to be as high
as 96% and 88%, respectively. The research paper[4] also states that deepening
the Residual Block layer in the image recognition model reduces the error rate
and greatly improves accuracy, so I can say that the image recognition model I
created and tested is highly reliable.

Table 6. First model : AutoEncoder Similarity

Similarity Value
Average Red Similarity 0.817

Average Green Similarity 0.799
Average Blue Similarity 0.810

RGB Similarity 0.809

Fig. 4. First model : AutoEncoder Process



10 Takuho Myojin.

Fig. 5. First model : Image Recognition Loss Process

Fig. 6. First model : Image Recognition Accuracy Process
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4.2 Second model Result and Discussion

The AutoEncoder results for the second model are shown in Figure 7 and
Table 7. Loss confirmed that the study was successful. Figure 7 shows the input
image, the Encoder output image, and the restored image. The input image
is the leftmost image, the Encoder output image is the center image, and the
restored image is the rightmost image. Focusing on the restored image, it was
confirmed that the entire image was restored. In addition, compared to the first
model, it was possible to colorize the image, but it was confirmed that it was
paler than the input image. In the paper [8], it is confirmed that the model can
be accurately restored using CAE, but the model created this time shows some
parts where data by color is lost, so this will be an issue to be addressed in
the future. Finally, Table 7 shows the similarity between the input image and
the restored image, which shows a decrease in similarity compared to the image
similarity of the first AutoEncoder.

The image recognition results for the second model are shown in Figures 8
and 9. Figure 8 shows the change in Loss per study. The vertical axis is Loss[-]
and the horizontal axis is Epoch. Overall, a gradual decrease was observed. In
addition, we could confirm the process of increasing and decreasing Loss once.
Figure 9 shows the change in the percentage of correct responses per study. The
vertical axis is the correct response rate [%] and the horizontal axis is Epoch.
As the number of studies increased, both Train Accuracy [%] and Test Accu-
racy [%] repeatedly decreased and increased, and finally Train Accuracy and
Test Accuracy were calculated to be 93% and 85%, respectively. However, we
observed a slight drop in accuracy compared to Figure 6. Overall, we believe that
a considerable accuracy can be achieved in a real environment for image recog-
nition. Similar to the previous experiment, the paper [4] states that deepening
the Residual Block layer in the image recognition model reduces the error rate
and greatly improves accuracy, so the second image recognition model I created
and tested is highly reliable.

Table 7. Second model : AutoEncoder Similarity

Similarity Value
Average Red Similarity 0.966

Average Green Similarity 0.973
Average Blue Similarity 0.977

RGB Similarity 0.972

5 Summary and Prospects

Regarding the design and accuracy verification of the AI model combining image
restoration and image recognition in this study, we were able to restore images
to some extent using CAE in image restoration. However, we believe that more



12 Takuho Myojin.

Fig. 7. Second model : AutoEncoder Process

Fig. 8. Second model : Image Recognition Loss Process

Fig. 9. Second model : Image Recognition Accuracy Process
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colorization of the restored image is needed. In image recognition, high accuracy
was achieved. As a future issue, it is necessary to mount the Encoder of CAE
on IoT devices, and it is also necessary to consider the means of communication
for this purpose.
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