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Abstract. Reconstruction of missing data for heavy-haul trains is an important 

factor in ensuring safe train operation. However, the existing methods of gener-

ative model require a complete data set for training, and it is very difficult for 

them to solve the issue of missing data completely at random. For this, this paper 

proposes a new attention-generative adversarial network to reconstruct missing 

data. First, a mask matrix is designed to locate the missing data, and the gradient 

descent algorithm is applied in combination with the output probability matrix of 

the discriminator, so that the mask matrix can still filling up the data well in the 

case of incomplete data set. Then, the prompt matrix is derived based on the mask 

matrix to solve the problem of model overfitting and accelerate the convergence. 

Finally, an attention mechanism is introduced into the whole GAN to improve 

the expression of data features by the feature extraction network. The experi-

mental results show that the mean square error and mean absolute error percent-

age indexes of reconstruction accuracy can be kept below 1.5 for measurement 

data at different missing rates, and the reconstructed data can also well conform 

to the distribution law of measurement data. 

Keywords: Incomplete data set; Attention-Generative Adversarial Networks; 

Missing data reconstruction; Reconstruction accuracy. 

1 Introduction 

High-quality data collection is important for securing a safe operation of the rail-

way and for enabling intelligent operation and maintenance strategies. However, due 

to the wide operating range and complex operating environments of heavy-haul trains, 

such as mountainous and continuous tunnels, it is easy to encounter issues of network 

failure, transmission interruption, harmonic interference, etc., resulting in the missing 

of a large number of operation and maintenance data. The evaluation of train status and 

diagnosis of system faults would be impaired if too much data was missing. Therefore, 



the key to ensure safe operation of the train is to reconstruction the missing data to the 

maximum extent, so as to achieve real-time and accurate monitoring of the train. 

The missing data can be divided into three categories: missing completely at ran-

dom, missing at random, and missing non-randomly. Data missing completely at ran-

dom means that the missing of data is random, does not depend on any incomplete 

variable or complete variable. And the occurrence of null value is completely unrelated 

to known or unknown features of the data set. This also means that the feature relation-

ship of the data surface cannot be utilized to fill the missing data. Instead, the internal 

feature relationship of the data needs to be dug out. The methods of filling up missing 

data are mainly the traditional methods and the deep learning-based missing data im-

putation methods. 

The traditional missing data filling methods can be further classified into three 

categories: probability-based[1], interpolation-based[2] and similarity-based[3] methods. 

The most typical probability-based method is Expectation Maximization (EM). Sun[4] 

combined an EM interpolation model with the K-Mean algorithm, and obtained an en-

hanced stability of clustering and a better imputation of the missing data. Smerdon et 

al. [5] tried to solve the problem of large amounts of missing data in time series, with a 

data-driven RegEM algorithm. The EM algorithm has been widely used for filling up 

missing data, however, when the quantity of the missing data in the data set is large, 

the calculation speed of this algorithm decreases. Interpolation-based methods, such as 

linear interpolation, spline interpolation, and polynomial interpolation, can infer possi-

ble values of missing values based on known data points. When the amount of missing 

data is relatively small, such methods have fairly high accuracy. However, for large 

quantity of missing data, the performance of such methods degrade significantly. Sim-

ilarity-based methods generally include K-Nearest Neighbor (KNN), K-means, and 

mean interpolation. K-Nearest Neighbor algorithm[6] has a faster calculation speed than 

EM algorithm, but in the case of extreme sample data missing, the interpolation accu-

racy will be reduced. Therefore, the traditional data reconstruction method is not supe-

rior in filling up missing data of high-speed train measurements. 

Missing data imputation methods based on deep learning can be divided into three 

categories according to training strategies: autoregression[7,8], autoencoding[9,10] and ad-

versarial training[11]. Autoregressive methods generally construct Recurrent Neural 

Networks (RNNs) and their variants to predict missing time steps by using complete or 

interpolated time steps. Such methods exploit the advantages of RNN in temporal cor-

relation and interpolate missing values through time series prediction. As the time series 

prediction lacks a global receptive field[12], error compounding will be caused. Autoen-

coding methods compress a high-dimensional input into a low-dimensional hidden state 

with the encoder, and then reconstruct the hidden state with a decoder. The encoder and 

decoder can be multi-layer perceptrons, convolutional neural network or other neural 

networks. However, due to the bottleneck structure, the autoencoder inevitably encoun-

ters information loss. Adversarial training is an interpolation method based on Genera-

tive Adversarial Networks (GAN)[13]. It is an unsupervised generative model that can 

self-learn data distribution patterns and characteristics, and subsequently generating 

data that conforms to these patterns and characteristics. However, during the data set 

training process of traditional GAN, it is difficult to reach Nash equilibrium when 



generating samples with the same distribution of the original data from random noise, 

resulting in gradient vanishing. More fundamentally, the training of these methods is 

not intuitive and differs from the imputation task. The inconsistency between the train-

ing and imputation processes limit the generalization performance of the model. 

In this paper, a missing data imputation method based on attention-generative ad-

versarial network (SAGAIN) is proposed. It is devotes to solve the reconstruction prob-

lem of data missing completely at random (MCAR) for train data measurements. The 

main contributions of this paper are summarized as follows: 

(1) A new missing data imputation process is proposed. The missing data set is 

directly used for model training to solve the problem of filling up data that misses com-

pletely at random. 

(2) A prompt matrix based on mask matrix is designed to locate the position of 

missing and to be trained data. The missing data would be processed in batches. This 

not only solves the problem of model overfitting, but also accelerates the model con-

vergence. 

(3) The Squeeze-and-Excitation Networks (SE-NET) of attention mechanism is 

introduced into the new model to increase the expression of data features by feature 

extraction network, and to explore deep features of data, so as to make the accuracy of 

filling missing data higher. 

2 Attention-generative adversarial networks 

The structure of the SAGAIN imputation algorithm designed for the reconstruc-

tion of missing data for train measurements is shown in Fig. 1. Its overall architecture 

includes data set processing, generator network, discriminator network, attention mech-

anism, output and other modules. 
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Fig. 1 Overall framework of missing data reconstruction model based attention-generative ad-

versarial network 



2.1 Missing data imputation process 

The data imputation process flow of the traditional GAN network method is shown 

in Fig. 2. First, the complete data set for model training is input to the GAN network, 

and after the generator and discriminator are trained against each other, several sets of 

data will be created for data imputation. Then, these sets of generated data will be eval-

uated with missing data in turn, and the set with the best imputation effect will be se-

lected. Finally, the original missing data in this set of data will be located, and used to 

fill up the positions of missing data void in the original data set. 

If there are many sets of missing data to be imputed, the traditional GAN network 

method needs to perform the operation one by one, and each imputation operation needs 

to be re-evaluated with the generated data of all sets. Then at last the original data set 

can be filled up. Therefore, the whole process will be tedious and time consuming. 

Moreover, in order to learn the potential feature relationship between data, the training 

data must be very complete. In the actual situation, normally several to-be-processed 

sets of data are partially complete and partially missing, so it is necessary to select the 

complete data for training and then fill in the missing data. 
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Fig. 2 Missing data imputation process of traditional GAN network 

The SAGAIN network proposed in this paper has a simplified process for missing 

data imputation, as shown in Fig. 3. Specifically, the data mixed with missing data for 

processing is directly input into the SAGAIN network, and after the adversarial training 

of the generator and the discriminator, the filled complete data is directly output. Com-

pared with the traditional GAN missing data imputation method, this model does not 

require to divide the missing data from the complete data. It integrates the data genera-

tion process and the data filling process, making the whole missing data imputation 

process simpler and more efficient. 
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Fig. 3 Missing data imputation process of SAGAIN network proposed in this paper 



2.2 Mask matrix and prompt matrix 

Mask matrix. To accurately locate the position of missing data, the proposed model 

utilizes a mask matrix M to reflect which variables are observed data and which are 

imputed data. The mask matrix M only contains two variables, 0 and 1. As shown in 

Fig. 4, the blank part of the missing data matrix indicates missing data, the number in 

the mask matrix for such corresponding position is 0, meanwhile, the corresponding 

number for intact data is 1. 
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Fig. 4 Schematic diagram of mask matrix 

Prompt matrix. If specific values are to be determined for M by training, overfitting 

is likely to occur. Thus, it is necessary to make some values in M uncertain. Here, an 

auxiliary variable B is defined first: 

 ( )  1,..., 0,1
d

dB B B=   (2.1) 

where, the specific value of B is set to 0 for 10% of B at random, and 1 for the 

rest. The dimension of B is consistent with that of the mask matrix M, then the follow-

ing calculation is carried out: 

 ( )0.5 1H B M B= + −  (2.2) 

where, is the Hadamard product matrix operation. The relationship between the 

mask matrix M, auxiliary variable B, and prompt matrix H is shown in a table: 

Table 1. Correlation of M, B and H 

M B H 

1 0 0.5 

0 0 0.5 

1 1 1 

0 1 0 

It can be seen in Table 1 that, when B = 0, H = 0.5; When B = 1, H = M. Therefore, 

when B = 1, the value of M can be inferred accurately from the value of H; When B = 

0, the value of M cannot be inferred from H, and this uncertain value of M is the object 

on which the model is to be trained. 



2.3 Generator 

In SAGAIN, the goal of the generator is to accurately fill in the missing data. 

Therefore, the generator shall maximize the classification error rate of the discrimina-

tor, so that the two are in a process of opposing each other. The input of the generator 

is obtained from the mask matrix M and the supplementary data X from noise by Equa-

tion (2.3) 

 ( )1newX X M Z M= + −  (2.3) 

where, newX  is the normalized raw data, and Z is the random noise with a value 

between 0 and 1. 

The output is provided by Equation (2.4) 

 ( )1 newX M X M X= − +  (2.4) 

In which, X  is the output of the generator, X   is the generated data. 

The generator shall interfere with the discrimination results of the discriminator to 

minimize the probability of the discriminator getting the correct answer. Since only 

values of B = 0 are trained, the sum of following two losses is to be minimized when B 

= 0: 

(1) When the real data is missing, the discrimination result (the probability of missing 

the data generated by the generator in the original data) is determined as the missing 

data: 

 ( )( ) ( ) ( ), , 1 logG j j j j i i

i j

L m x h b m p


= − −，D  (2.5) 

(2) When the real data is not missing, the difference between the generated result and 

the original data: 

 ( ) ( )
2

,M j j i i i

i j

L x x m x x


 = −  (2.6) 

In Equation (2.5) and (2.6): j is any position in the corresponding matrix, i is the 

position of auxiliary variable B = 0, and P is the output probability matrix of the dis-

criminator. 

In summary, the final loss function is: 

 ( )( ) ( ), , ,G j j j j M j jL m x h b L x x +
  ，D  (2.7) 

2.4 Discriminator 

The input for the discriminator are the output of the generator and the prompt ma-

trix H. The goal of the discriminator is to accurately distinguish whether the data is 

filled data or real data, so the discriminator shall minimize the classification error rate. 

At the same time, in order to make the adversarial process obtain more ideal results, a 

prompt matrix H of partial information about the data is provided for the discriminator, 

so that the samples generated by the generator are forced to be close to the real data 

distribution. For this, the discriminator needs to output estimated values of the elements 

in the mask matrix, that is, the probability that the data is not missing. The estimated 

value of the discriminator is given by: 

 ( ) ( ), 0 ~ 1j j jp D x m=   (2.8) 



Regarding the loss function, the discriminator shall maximize: (1) the difference 

between the discriminant result (the probability that the data generated by the generator 

is missing from the original data) and 1 when the real data is missing; (2) When the real 

data is not missing, the difference between the discrimination result and 0. 

 ( )( ) ( ) ( ) ( ), , log 1 log 1D j j j j i i i i

i j

L m x h b m p m p


 = + − − ，D  (2.9) 

where, the log terms are all negative, so the difference that really needs to be min-

imized is (i.e., the discriminator loss function): 

 ( )( ), ,D j j j jL m x h b− ，D  (2.10) 

2.5 SE-NET attention mechanism 

Designing a high-performance discriminator D as well as a high-performance gen-

erator G is of great significance for learning deep features of data and generating high-

quality data. Based on the GAN structure, a SE-NET attention mechanism module is 

added to the discriminator and the generator respectively, and a weight is used to indi-

cate the importance of each channel in the next stage. 

As shown in Fig. 5, the SE-NET attention mechanism is mainly composed of a 

SE module, a Squeeze operation, an Excitation operation and a feature fusion. The 

weights of each channel are assigned. After the Squeeze operation, the network obtains 

a global description. The Excitation operation and the feature fusion enable the fully 

connected layer to well integrate all the input feature information, and the Sigmoid 

function can also well map the input to the 0~1 interval. 
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Fig. 5 SE-NET attention mechanism 

As can be seen in Fig. 5, this attention mechanism can be divided into the follow-

ing three steps: 

First, the process of Squeeze is to convert the output code of the upper layer into 

a statistical vector through global pooling compression. The calculation formula is as 

follows: 

 ( )

1

1
(h )

k
t

t sq t i

t

z F h
k =

= =   (2.11) 

where,  1 2, ih h h h=  is the output encode of the previous layer, and 

1 2,, z iz z z =    is the statistical vector after compression and conversion. In this pro-

cess, the performance of average pooling is obviously better than that of maximum 

pooling, so Z is calculated with the average values. 



Second, the process of Excitation is to fuse all input features through the fully 

connected layer of two nonlinear activation functions, and the Sigmoid function can 

keep the output within a specific range at last. The assignment calculation is as follows: 

 ( )( )2 2 1 2(Z)exA F W W Z = =  (2.12) 

where, 
1  and

2  are functions of ReLU and Sigmoid functions, respectively. 

Through the scaling function and assignment of 
1 2W W， , the number of model param-

eters is reduced, and the calculation speed is increased. 

Finally, the fusion process is to fuse the channel weights obtained by the above 

two operations with the original features, and to assign weights to the features through 

simple multiplication. 

3 Experimental results 

3.1 Case preparation and data set processing 

The program experiments were implemented by Python code. The hardware envi-

ronment was CPU processor Intel(R) CoreTM i5-9300H CPU, frequency 2.40GHz; 

The GPU was NVIDIA GeForce GTX 1650, and the platform version was Python 3.7.7 

and torch 1.4.0. 

Table 2. Train data analysis 

 

Max.  

positioning 

DC voltage 

Min.  

positioning 

DC voltage 

Average po-

sitioning DC 

voltage 

Max.  

positioning 

AC voltage 

Min.  

positioning 

AC voltage 

Ranges 21.55-23.0 20.52-22.78 21.53-22.83 70.83-77.09 70.45-73.65 

Values 22.2644 22.1262 22.1832 72.2653 71.8572 

Vari-

ances 
0.0937 0.0904 0.0881 0.4837 0.5548 

In the experiment, the actual operation and maintenance data of a train in 32 days 

were selected, and the five characteristics of the same equipment (maximum and mini-

mum values of positioning DC voltage; maximum, minimum and average values of 

positioning AC voltage) were used. The data selection of the same equipment improves 

the strong correlation of data characteristics. This group of data had a total of 1300 

complete and intact data items, Table 2 shows the specific information of the data. In 

order to verify the interpolation effect of this model on missing data, random sampling 

was applied in this paper to generate missing data for the sample data.  

Since the data of this model was the complete data set X, the experiment used the 

binary mask matrix and the complete data to perform Hadamard product operation to 

represent the missing data. Considering the uncertainty and uncontrollability of the 

missing position of the measured data during the actual operation of the train, the gen-

erated mask matrix was set randomly, in which 1 represented intact and 0 indicated 



missing. The number of missing measurements was controlled by controlling the num-

ber of 0 in the mask matrix. The specific steps were to generate a mask matrix M (0 set 

for the missing part and 1 for the complete part) with randomly missing data according 

to a certain missing rate (proportion of 0), and then the obtained data set was as follows: 

 X M X=  (3.1) 

Finally, the data set was divided into training set Xtrain and test set Xtest at a ratio 

of 8:2, and the corresponding mask matrices were Mtrain and Mtest. In actual situation, 

the mask matrix would be generated from the corresponding missing data set. The di-

mension of the training set was (1040, 5), while the dimension of the test set was (260, 

5). In order to evaluate the ability of the model in handling the imputation of missing 

data, the training set and test set data must not be duplicated. 

3.2 Parameter setting and evaluation indicators 

In the experiment, the learning rate of generator G and discriminator D of the 

training model was set to 0.001. Due to the small number of data samples in this exper-

iment, in order to make the network reach the optimal solution of gradient descent faster 

and make the model converge to stability quickly, Batch size was set to 128 for 15,000 

Epoch cycles. An unsupervised learning effect was achieved in attribution to the model 

structure. 

For the evaluation of missing data reconstruction, two indicators, Mean Squared 

Error (MSE) and Mean Absolute Percentage Error (MAPE), were used in this paper. 

The calculation methods are shown in Equation (3.2) and (3.3): 

 ( ) 2

1

1
ˆ ˆ, ( )

n

i i

i

MSE x x x x
n =

 
= − 

 
  (3.2) 

 ( )
1

ˆ

ˆ, 100

n
i i

i i

x x

x
MAPE x x

n

=

−

= 


 (3.3) 

where, ix  represents the original train measurement data, and ˆix  indicates the 

completed data after reconstruction. The values of above two indicators of the recon-

struction results reflect the performance of missing data reconstruction. The smaller the 

MSE and MAPE values, the better the reconstruction performance. 

3.3 Experimental analysis 

Comparison of experimental results at different missing rates. The experiment 

performed reconstruction calculations for random missing data on 260 test data items. 

The test set Xtest was input into the trained model. If for a device, data of a feature was 

missing, the feature values of other devices on the current day and the past days could 

be learned, and then the missing part could be reconstructed by combining the rules of 

other non-missing feature values of this device. The MSE and MAPE values shown in 

Table 3 and 4 were calculated from the measured data and the reconstructed data. 



Table 3. MSE of reconstruction results 

Missing 

rate 

Max.  

positioning 

DC voltage 

Min.  

positioning 

DC voltage 

Average 

positioning 

DC voltage 

Max.  

positioning 

AC voltage 

Min.  

positioning 

AC voltage 

0.1 0.029838 0.014086 0.027521 0.203050 0.066439 

0.2 0.022212 0.022171 0.044166 0.231970 0.481436 

0.3 0.015801 0.083700 0.021629 0.361021 0.275658 

0.4 0.058681 0.116857 0.055213 0.478309 0.411178 

0.5 0.147878 0.066751 0.051127 0.642647 1.095744 

 

Fig. 6 MSE of DC voltage at different missing rates 

 

Fig. 7 MSE of AC voltage at different missing rates 

The MSE values at different missing rates are shown in Table 3 and Fig. 6-7. As 

shown in Fig. 6, for the reconstruction of three sets of DC voltage data, MSE has always 

been at a relatively low value, ranging from 0.01 to 0.15, but with the increase of the 

missing rate, MSE generally shows a slow upward trend; While Fig. 7 shows that, for 

the reconstruction of two sets of AC voltage data, the evaluation indicators ranges from 

0.1 to 1.1, and shows a uniform upward trend with the increase of the missing rate. This 

indicates that the model maintains a high reconstruction accuracy, and the reconstruc-

tion performance for DC data is better than that for AC data. 



Table 4. MAPE of reconstruction results 

Missing 

rate 

Max.  

positioning 

DC voltage 

Min.  

positioning 

DC voltage 

Average 

positioning 

DC voltage 

Max.  

positioning 

AC voltage 

Min.  

positioning 

AC voltage 

0.1 0.627145 0.415247 0.591765 0.485682 0.266732 

0.2 0.442620 0.565620 0.619057 0.511420 0.760844 

0.3 0.437926 1.054228 0.532856 0.648620 0.566849 

0.4 0.820259 1.289491 0.792290 0.738592 0.712877 

0.5 1.447812 0.905875 0.772731 0.871104 1.208223 

 

Fig. 8 MAPE at different missing rates 

The MAPE values at different missing rates are shown in Table 4 and Fig. 8. It 

can be seen from Fig. 8 that when the missing rate is less than or equal to 0.3, the 

evaluation indicators are in a slow rising state and remain at a low value. When the 

missing rate is greater than 0.3, there are great changes in the evaluation indicators. 

Although the increased amount of missing data will affect the reconstruction perfor-

mance, generally, the value of the indicator is always below 1.5. This means the error 

between the reconstructed data and the original measurement data is very small. In an-

other word, when data is missing at a large quantity in the measured operation and 

maintenance data of trains, the data reconstruction model SAGAIN proposed in this 

paper has the ability of reconstructing missing data at high accuracy. 

Overall, the data is missing at a rate of 10% to 50%, this model can always recon-

struct the missing data with a high accuracy. When the missing rate is lower than 30%, 

the reconstruction results of the five eigenvalues do not change much and a high accu-

racy is maintained, the reconstruction effect is still quite good when the missing rate is 

50%. It indicates that the model can handle the reconstruction of large amount of miss-

ing data for high-speed trains. 

Comparison of missing data imputation by different algorithms. As shown in 

Table 5, in the case of a missing rate of 20%, a comparison of the maximum and 



minimum values of positioning DC voltage was carried out. Another four currently 

widely used generative models (GAN, VAE, VAE-GAN and VAE-FGAN)[14] were ap-

plied to obtained corresponding missing imputation results. The parameters were set as 

follows: the learning rate of encoder E and discriminator D was set to 0.001, the learn-

ing rate of generator G was set to 0.0002, and Batch size was set to 128, for 100 Epoch 

cycles. 

Compared with the three generative models of GAN, VAE and VAE-GAN, the 

model proposed in this paper has superior performance regarding various indicators. 

Compared with the VAE-FGAN model, although the evaluation index MAPE of the 

proposed model is higher for the data missing reconstruction of the maximum positing 

DC voltage, the increase remains in a low range. While the values of the other three 

indicators are still significantly better than those of VAE-FFGAN model, especially the 

MAPE of the minimum DC voltage, which decreases from 0.1623 to 0.0221, indicating 

a very large improvement. By analysis, the increase of the indicator value could be due 

to the fact that the data set required by the model SAGAIN in this paper does not need 

to be a complete data set, but with a certain part of data missing, This is also in line 

with the actual situation of train measurement data. 

Table 5. Comparison of missing data reconstruction by different models 

Comparison 

method 

Max. positioning DC voltage Min. positioning DC voltage 

MSE MAPE MSE MAPE 

GAN 0.1016 1.2674 0.3394 2.2842 

VAE 0.0976 1.2234 0.2132 1.2561 

VAE-GAN 0.0846 1.1891 0.2098 0.9263 

VAE-FGAN 0.0314 0.3505 0.1623 0.6659 

SAGAIN 

(proposed in this 

paper) 

0.0222 0.4426 0.0221 0.5656 

Missing data imputation experiment. For complex railway operation scenarios, the 

loss of measurement data at certain times is prone to occur, and even a long time data 

missing is possible due to the maintenance of train sunroof equipment. To evaluate the 

performance of missing data imputation, the generated missing data shall be filled back 

into the original contextual data to see if the imputation data fits the distribution char-

acteristics. The test data was randomly deleted with a deletion rate of 20%, and the 

missing data was reconstructed by the model in this paper, and the first 50 samples of 

each feature were taken, the results are shown in Fig. 9. The orange curve represents 

the distribution of the original data, while the blue curve represents the reconstructed 

data. The non-coincidence of the two curves indicates the positions of missing and filled 

data. The difference between the blue and orange points can intuitively express the dif-

ference of the filled data. It can be seen from the five feature maps in Fig. 9 that the two 

curves have a high degree of fitting, which indicates that the proposed SAGAIN model 



can greatly restore the original data information distribution and achieve a high recon-

struction accuracy by learning the feature law of data from the same equipment. 

 

 

 

 



 

Fig. 9 Visualization of data reconstruction performance 

4 Conclusions 

In order to ensure the safe operation of trains and solve the problem of measure-

ment data missing at random, this paper proposes a missing data imputation method 

SAGAIN based on generative adversarial networks. It is verified to be effective by good 

results of reconstructing missing data. The main conclusions are as follows: 

(1) The proposed model in this paper applies the data set with missing directly 

instead of using only complete data set as the traditional generative models. Based on 

a new generative adversarial network, the model integrates the generation and imputa-

tion of missing data into one process. Data set with missing data as the input for the 

training, and reconstructed complete data set as the output. 

(2) The influence of different data missing rates on reconstruction performance of 

the proposed model is evaluated. With increasing data missing rate, the value of recon-

struction indicators ascend slowly. Fortunately, the MSE and MAPE indicators are al-

ways below 1.5 at missing rate of 0.1~0.5, remaining at a relatively low value. It means 

that the reconstruction model of SAGAIN in this paper has high reconstruction accu-

racy even when there is a large number of data missing in train operation and mainte-

nance measurements. 

(3) The SAGAIN model proposed in this paper is an improved model based on 

the GAN model. A SE-NET attention mechanism module is introduced into the GAN 

model. By comparing with other missing data imputation algorithms, it can be seen that 

after adding the attention mechanism, the four groups of evaluation indicators of the 

proposed model are improved and significantly superior to those of other generative 

models, and the reconstructed data also meet the distribution characteristics of meas-

ured data, indicating that the attention mechanism has a good effect on channel 

weighting and improves the imputation accuracy. 

For future work, efforts can be devoted to improve the SAGAIN network model. 

For example, the prompt matrix in the network architecture is to prevent the generator 

G from failing to obtain effective gradient information and speed up convergence, how-

ever, it also complicates the network model to a certain extent and increases the training 

time. Studies can be carried out to replace the prompt matrix with other methods to 

further simplify the network model, so as to speed up the convergence of the model on 



the premise of ensuring the imputation accuracy. This is also conducive for the network 

model to use the transfer learning method to solve the problem that the original data is 

a small sample. 
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