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Abstract. Fisheye cameras offer a wider field of view compared to tra-
ditional pinhole cameras. This paper presents a pose estimation method
for fisheye cameras based on the EPnP algorithm. A unified projection
model is used to analyze the imaging process, and it is shown to be appli-
cable to fisheye cameras. A virtual pinhole camera is constructed, where
the image captured by the fisheye camera is mapped onto the virtual
camera’s image. The resulting virtual 2D reference points are then used
as input to the EPnP algorithm for estimating the fisheye camera’s pose.
The mapping error from the fisheye image to the virtual camera image
is analyzed, revealing that the process does not amplify pixel error when
extracting 2D reference points. It is recommended to select points near
the image’s central focus as 2D reference points. Experimental results
demonstrate that the proposed method is both reliable and efficient.

Keywords: Fisheye cameras - Pose estimation - Perspective-n-Point.

1 Introduction

Camera pose estimation is a technique used to determine the position and orien-
tation of a camera relative to its environment based on images. It plays a critical
role in environmental perception for unmanned systems. The Perspective-n-Point
(PnP) problem involves estimating the pose of a calibrated camera using a set
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of n 3D points and their corresponding 2D projections in the image. Numerous
researchers have proposed methods to solve this problem. For example, Quan et
al. [14] and Gao et al. [6] solved the specialized P3P problem; Fiore addressed
the PnP problem for arbitrary values of n with a time complexity of O(n?)[5],
though this method is sensitive to noise; Ansar et al. proposed a high-accuracy
set of linear solutions to the pose estimation problem for both n points and n
lines[1].

In 2009, Lepetit et al. introduced the EPnP algorithm|[11], a non-iterative so-
lution to the PnP problem with linear time complexity O(n). Since then, this al-
gorithm has been widely adopted for camera pose estimation. Most non-iterative
PnP algorithms first determine the depth of feature points in the camera image
to calculate the 3D coordinates of the feature points in the camera coordinate
system. In contrast, the EPnP algorithm represents the 3D reference points in
the world coordinate system as a weighted sum of virtual control points. Typ-
ically, four virtual control points are required, which must not lie on the same
plane. By solving for the coordinates of these control points in the camera coor-
dinate system, the camera’s pose can then be estimated.

Building on Lepetit et al.’s work, numerous researchers have proposed vari-
ations of pose estimation methods based on the EPnP algorithm. For instance,
Penate-Sanchez et al. introduced a pose estimation algorithm for cameras with
unknown focal lengths[13] in 2013; Deng et al. designed a pose estimation method
for spherical panoramic images in 2016[4]; Gong et al. improved the EPnP al-
gorithm for omnidirectional cameras in 2021[8]. In practice, applying the EPnP
algorithm is typically just one step in the broader pose estimation process, as it
requires the 3D coordinates of reference points in space, which usually depend
on the depth information of the images.

Currently, unmanned systems commonly employ traditional cameras based
on the pinhole imaging model, which offers simplicity and minimal distortion but
has a limited field of view. This constraint can lead to insufficient environmental
data, resulting in suboptimal motion planning and delayed control responses.
In contrast, fisheye cameras, with extremely short focal lengths—usually less
than 16mm—produce hemispherical images with significant visual distortion and
an angle of view approaching or reaching 180°. Compared to pinhole cameras,
fisheye cameras capture a far wider range of environmental information, making
them increasingly popular in unmanned systems.

Fisheye cameras project the largest possible scene onto a limited image plane
using specific projection functions. Based on these functions, fisheye camera
models are generally categorized into four types: equidistant, equisolid (equal
area), orthographic, and stereographic. In practice, fisheye cameras do not per-
fectly conform to these models, leading researchers to propose specialized models
for fisheye cameras. In 2006, Kannala and Brandt introduced a universal cam-
era model where the distance from the optical center to the projection point
is proportional to the angle between the projection ray and the principal axis,
expressed as a polynomial[9]. That same year, Scaramuzza et al. proposed a
model assuming that the camera and lens axes are perfectly aligned and the lens
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is rotationally symmetric about its axis[15]. This model maps points in space
to corresponding points on the image plane using a Taylor series expansion. In
2007, Mei and Rives proposed a method for calibrating single omnidirectional
cameras using a planar chessboard[12], introducing a spherical projection model.
This model incorporates precise theoretical projection functions while adding pa-
rameters to simulate real-world errors, proving effective for fisheye and spherical
cameras.

Employing fisheye cameras for pose estimation enables the utilization of envi-
ronmental information over a broader spatial range, which benefits the localiza-
tion of unmanned systems and thus holds significant research value. The severe
radial distortion in fisheye images makes it difficult to apply the EPnP algorithm
directly. This paper proposes a pose estimation method tailored for fisheye cam-
eras, based on the EPnP algorithm with a time complexity of O(n). First, we
establish a fisheye camera model using the unified projection model introduced
by Mei et al. in Section 2. In Section 3, we propose a pose estimation method for
fisheye cameras: we construct a virtual pinhole camera, map the image captured
by the fisheye camera to the virtual pinhole camera’s image, and use the result-
ing virtual 2D reference points as input to the EPnP algorithm to estimate the
pose. Section 4 analyzes the error arising from mapping fisheye camera images
to virtual pinhole camera images. Finally, in Section 5, experiments validate the
proposed method’s stability and efficiency compared to OpenCV.

2 Fisheye Camera Model

Fisheye cameras produce images with significant radial distortion, rendering
them incompatible with the traditional pinhole camera model. Mei et al. de-
veloped a spherical projection model for omnidirectional cameras, known as the
Unified Projection Model [12], building on the projection models proposed by
Barreto et al. and Geyer et al. [2,7]. They also introduced a calibration method
using planar grids to support this model.

|
y X

N

Fig. 1: Selection of the Cartesian coordinate system

Consider the Cartesian coordinate system depicted in Figure 1. As illustrated
in Figure 2, a point X (z,y, z) in the world can be projected onto the camera’s
image plane through the following steps:

(1) A 3D point X(z,y,z) in the world coordinate system with origin Oy =

(0,0,0) is projected onto the unit sphere, X — X, = HX—H = (Ts,Ys, 2s)s

where || X|| represents the norm of X.
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Fig. 2: Unified Projection Model

(2) In a new coordinate system with origin O, = (0,0, —¢), (Xs)7, — (Xs)7,,
- (‘rsayswzs + 5)

(3) The point X is projected onto the normalized plane to obtain the point Uk,
Us = h(X.) = (g 25 1)

(4) The final projection involves the camera projection matrix K, projecting Us
to U on the camera image plane,

Jin fina ug
U=k(U,)=KU,=| 0 fon vo|Us, (1)
0 0 1

where [f1, f2]" are the focal lengths in the X and Y directions, (ug,vo) is
the principal point, and « is the skew coefficient, typically set to 0.

Thus, the relationship between a 3D point X and the corresponding point U on
the camera image plane can be expressed as:

U:K~h(”§—|‘). (2)

In this process, ¢ and 7 are parameters related to the camera lens. Table 1
presents the values of £ and 7 for different lenses, while Table 2 lists the equations
satisfied by these parameters for various lenses, where d represents the distance
between the two focal points of the lens, and 4p denotes the latus rectum.

A generalized camera projection matrix K is used, treating the camera and
its lens as a single entity rather than separate components. As a result, f and n
cannot be independently estimated during calibration. We define f, = fin and
fy = fan accordingly.

Mei et al. demonstrated that the Unified Projection Model is applicable to
fisheye cameras, building on the work of Ying et al. and Brauer-Burchardt et
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Table 1: Parameters for different lenses

Table 2: Lens Parameter Equations

Lens Type 13 n Lens Type Equation
Parabolic 1 *gp Parabolic [/z2 +y2 + 22 = 2 + 2p
: d —2p 2 dy2
Hyperbolic d2+4p2 +/d2+4p2? Hyperbolic ¢ +a§> . Z—j =1
Elliptical |——%— — 22 I G+9? | w2y
/@2 +ap? ~/d2+4p? Elliptical St it = 1
Planar 0 -1 Planar z=—4

al.[3,12,16]. By performing calibration using planar grids, the fisheye camera’s
intrinsic parameters, including the projection matrix K and the lens parameter
&, can be accurately obtained.

3 Pose Estimation Method For Fisheye Cameras

After applying the Unified Projection Model for fisheye cameras, we propose a
pose estimation method tailored to fisheye cameras based on the EPnP algo-
rithm. The inputs for the algorithm are as follows:

(1) Coordinates of n 3D reference points in the world coordinate system;

(2) Coordinates of n 2D reference points on the fisheye camera image corre-
sponding to the 3D reference points;

(3) The projection matrix K and lens parameter £ of the fisheye camera.

First of all, n points are selected as 3D reference points in the world coordinate
system. Then, n corresponding points are extracted from the fisheye camera
image, resulting in n 2D reference points.

The EPnP pose estimation algorithm proposed by Lepetit et al. has a time
complexity of O(n) [11], making it computationally efficient. However, the cam-
era model used in the EPnP algorithm is the conventional pinhole camera model,
which is not suitable for fisheye cameras.

3.1 Mapping to Virtual Image Plane

To apply the EPnP algorithm, a virtual pinhole camera is constructed. Based on
the Unified Projection Model described in Section 2, a virtual image plane u?"
is created, and the mapping f from the fisheye camera image plane u to u"*"
is defined. For simplicity, we set the distance from u**" to the origin O of the
camera coordinate system to 1, and ensure that ¥ is parallel to u, meaning
that it is positioned at the plane z = 1. The point [0,0, l]T is chosen as the
origin of u¥", as illustrated in Figure 3.

We now begin the process of mapping a point U on the fisheye camera image
plane u to its corresponding point U, on the virtual image plane u""". First,
map the point U to a corresponding point Us; on the normalized plane in the
Unified Projection Model, denoted as fi:

Us = fi(U) = K~'U, (3)



6 C. Wang, B. Wang et al.

Fig. 3: Virtual image plane

where K is the projection matrix of the fisheye camera.
Then, map Us to a point X on the unit sphere s, denoted as fo. In fact, f;
is the inverse mapping of 7 described in Section 2:

E+/1+(14E2) (us2+vs2)
us2 v 2+1 " Us
Xs = f2(U8) = hil(Us) =& 12212151125)2(-7:512—“}52) * Us (4>
1+(1—-62)(us?+vs?)
usZ4+vg2+1 —¢

where (us,vs) are the coordinates of Us, and £ is the lens parameter.
Finally, map X; to a point U, on u¥"", denoted as fs:

Zs

zs

Uyir = f3(Xs) =| & ) (5)

Zs

where [z, ys, zS]T represents the coordinate of X, satisfying the condition 22 +
yi+22=1

The mapping from a point U on the fisheye camera image plane u to a
point U,;, on the virtual image plane 4" has now been completed, denoted as
mapping f. This mapping f is the composition of the mappings f1, f2, and f3:

Uir = [(U) = f3(f2(f1(U))) = fs(A™ (E'U)). (6)

For the n 2D reference points on wu, calculate the corresponding n virtual 2D
reference points on u”"" using the mapping f. With these n 3D reference points
in the world coordinate system and the n virtual 2D reference points on u”*" as
inputs, the EPnP algorithm can be applied to determine the rotation matrix R
and translation vector t of the fisheye camera relative to the world coordinate

system, thus providing the pose of the fisheye camera.

3.2 Parameterization

Conventionally, four virtual control points are selected. Let the coordinates of
the n 3D reference points in the world coordinate system be denoted as p¥¥(i =
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1,2,...,n), and let the coordinates of the four virtual control points be denoted
as c’(j = 1,2,3,4), where p{” and ¢} are given in non-homogeneous coordinates.

In the world coordinate system, each 3D reference point is represented as a
weighted sum of the virtual control points:

4
P = e, > ay =1, (7)
i=1

j=1

where «;; are referred to as Homogeneous Barycentric Coordinates. Once four
non-coplanar virtual control points are determined, the coordinates oy; are
uniquely determined.

Let the coordinates of the n 3D reference points in the camera coordinate
system be denoted as pf(i = 1,2,...,n), and the coordinates of the four vir-
tual control points be denoted as c§(j = 1,2,3,4), where p; and c§ are given
in non-homogeneous coordinates. In the camera coordinate system, a similar
relationship holds:

4
P =y e (8)
j=1

Converting Equation 7 to matrix form:

(6731 (751

P |2 | _ | ey ey cf | | aig

|: 1 :| =C (675 - l:l 1 11 Q53 ’ (9>
Qg (77}

where [ oy’ 1} and [c;” 1] are both homogeneous coordinates. This implies that
the homogeneous coordinates of the 3D reference points are a linear combination
of the homogeneous coordinates of the virtual control points.

From Equation 9, the formula for calculating the Homogeneous Barycentric
Coordinates o;; is given by:

Q41

oo | 1 | DY

e | o []. 0
e77}

Now, choose the virtual control points. In the world coordinate system, the
centroid of the n 3D reference points is selected as the first virtual control point:

w 1 w
= ﬁzpi . (11)

Compute the matrix

py —cf
A= (12)
Py —cf
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Let \;(i = 1,2,3) be the eigenvalues of AT A, and v;(i = 1,2,3) be the cor-
responding eigenvectors. The remaining three virtual control points are then
determined using the following formulas:

cy =cf + Vvl
ey = cf + V Av2, (13)
cy =cf +/Aszv3.

3.3 Solution of Virtual Control Points Coordinates in Camera
Coordinate System

Let w;e =1,...,n be the virtual 2D reference points corresponding to the 3D
reference points p$i = 1,...,n on u¥". It is important to note that the camera
model used here should be the virtual pinhole camera model. Therefore, the pro-
jection matrix used should be the projection matrix K,;. of the virtual pinhole
camera. Since the distance from the virtual image plane u"" to the origin O of
the camera coordinate system is 1, the focal length of the virtual camera is also
1. Additionally, the coordinates of the origin of ¥¥*" in the camera coordinate
system are [0,0, 1]T. Consequently, the projection matrix K,;. is the identity
matrix I3. According to the pinhole camera model, we have

Us

4
Vi, w [ 1} = Kpf =K ai, (14)
j=1
where w; is a scalar depth parameter.
Let cj = [x]c Y5 ch']Ta K = K, = I3, then:

C C

U; 4 xj 4 l'j

. _ § : c c| E c c
VZ, w; | Vg —13 aijcj yj = ozijcj yj . (15)

= ¢ = ¢

1 Jj=1 ZJ j=1 Zj

By w; = Z?Zl a;jzj and Equation 15, we obtain two linear equations:

Oéijl‘j — aijuizﬂ = 0,
(16)

[Oéijy; - aijvizﬂ =0.

4
; [

4
For each virtual 2D reference point u; on the virtual image plane, we can derive

2 linear equations. Thus, with n virtual 2D reference points u;(i = 1,...,n), we
obtain a total of 2n linear equations. By combining these 2n linear equations,
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we form a linear system:

L1

a1 0 —apjuy ..oag 0 —aggug YT

0 «11 —Q11V1 ... 0 14 —Q14U1 Zf

an1 0 —apity ... apgs 0 —apatun T

0 on1 —anivp .. 0 apa —0matn |5 15 yi
L 24 ] 191

Let M denote the first matrix on the left-hand side of Equation 17. The vector
T

T = [ch ch ch CZT contains the coordinates of the 4 virtual control points

in the camera coordinate system. Then,

Mz =0. (18)

Thus, x lies in the right null space of the matrix M, i.e., z € ker(M).

Suppose that the matrix M7M has N zero eigenvalues, and let vgx(k =
1,..., N) be the eigenvectors corresponding to the k-th zero eigenvalues of matrix
MTM. Then,

N
T = Zﬂkvka (19)
k=1

where (), are coefficients.
For the i-th virtual control point,

N
=3 B, i=1,2,3,4, (20)
k=1
where v,[j I'is the i-th 3 x 1 block submatrix of eigenvector vy.

To solve for vy, compute the eigenvalues and eigenvectors of the matrix
MT M. The eigenvectors corresponding to the zero eigenvalues are vi. The num-
ber of zero eigenvalues N of the matrix M7 M depends on the camera focal length
and the number of 3D-to-2D correspondences. The EPnP algorithm addresses
cases where N = 1,2,3,4. Note that the matrix MTM is 12 x 12, and calcu-
lating MT M has a computational complexity of O(n), resulting in an overall
complexity of O(n) for the pose estimation method.

Then, solve for By (for k = 1,...,N). Since the distance between any two
virtual control points is invariant in both the world coordinate system and the
camera coordinate system, we have

N N
e — 11 = lles — I = 11> Brofl = 37 ol 2. (21)
k=1 k=1

This equation is quadratic in terms of Sx(k = 1,...,N) and does not contain
linear terms of 3. By defining 3;; = 3;5;, Equation 21 can be transformed into
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a linear equation in terms of 3;;(¢,7 = 1,..., V). With 4 virtual control points,
we obtain C% = 6 linear equations, forming a linear system.

When the number of zero eigenvalues N of the matrix M7 M is 1, 2, or 3, the
number of unknowns in the linear system is less than the number of equations,
making it straightforward to solve for 3;;. However, when N = 4, the number of
unknowns 10 exceeds the number of equations. In this case, the "linearization"
method proposed by Kipnis et al. can be used to solve for 5;; [10].

The Br(k = 1,...,N) obtained in this process are initial estimates and can
be further refined using the Gauss-Newton method.

3.4 Camera Pose Computation

First, calculate the coordinates of the virtual control points in the camera co-
ordinate system, ¢f for ¢ = 1,2,3,4, using Equation 20. Then, compute the
coordinates of the 3D reference points in the camera coordinate system, p§ for
1 =1,2,...,n, using Equation 8.

Next, determine the centroid p§ (ci’) of the n 3D reference points p¥’(i =
1,2,...,n) in the world coordinate system using Equation 11, and compute the
matrix A using Equation 12.

Similarly, calculate the centroid p§ of the n 3D reference points pS(i =

1,2,...,n) in the camera coordinate system and compute the matrix B:
CT CT
1 n P1 —DPo
[—— ¢ B= . 22
Po n z_:pz T T ( )
i=1 Pn —DPo
Then, compute the matrix H:
H=DBTA. (23)

Perform Singular Value Decomposition (SVD) on matrix H:
H=UxVvT, (24)

Then, calculate the rotation matrix R of the camera coordinate system relative
to the world coordinate system:

R=UVT, (25)

If det(R) < 0, adjust R by setting R(2,:) = —R(2,:).
Finally, calculate the translation vector ¢ of the camera coordinate system
relative to the world coordinate system:

t=ps— Rpg. (26)

Note that there are four possible solutions for 3, resulting in four different pairs
of rotation matrix R and translation vector ¢. Select the solution that minimizes
the reprojection error as the final result. This concludes the computation of the
fisheye camera’s pose.
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4 FError Analysis

This section presents an error analysis of the fisheye camera pose estimation
method based on the EPnP algorithm introduced in Section 3. The method
consists of three main steps:

(1) Calibrating the fisheye camera using a planar checkerboard;

(2) Constructing a virtual pinhole camera and mapping the fisheye camera im-
ages to virtual pinhole camera images, thus obtaining virtual 2D reference
points;

(3) Applying the EPnP algorithm to solve for the fisheye camera pose.

Errors introduced during fisheye camera calibration using a planar checkerboard
have been analyzed by Mei et al.[12], while errors from applying the EPnP
algorithm to estimate the fisheye camera pose have been discussed by Lepetit et
al.[11]. Therefore, this section focuses exclusively on analyzing the errors in the
mapping function f, which maps a point U on u to a point U, on uV".

When extracting 2D reference points from fisheye camera images, errors are
introduced. In the following analysis, we examine how these errors affect the
mapping f through numerical computations. We use a fisheye camera with a
focal length of 1.4 mm, a 180° field of view, an image resolution of 640 x 480
pixels, and a principal point at (ug,vo) = (360.036,214.209).

First, we analyze how varying pixel error magnitudes during the extraction of
2D reference points from fisheye camera images influence the errors when these
points are mapped to the virtual image plane U,;- via the mapping function
f. Numerical computations show that when the pixel error direction during
point extraction aligns with the direction from the principal point to the true
2D reference point, the error direction in the mapping f corresponds to the
direction from the origin to the 2D reference point on the virtual image plane.
Thus, without loss of generality, we choose a point U(ug + 100, vp), located 100
pixels away from the principal point, as the 2D reference point. The error in the
distance from the origin to the virtual 2D reference point, induced by varying
pixel error lengths from 0 to 3, is then calculated. The results are shown in
Figure 4.

The line graph shows that the error introduced by the mapping function f
increases linearly with pixel error lengths when extracting 2D reference points.
This indicates that the mapping f does not amplify the pixel errors incurred
during the extraction of 2D reference points.

Next, we analyze how different positions of 2D reference points, each with the
same pixel error length, affect the errors when these points are mapped onto U,;,
via the mapping f. Numerical computations reveal that, for 2D reference points
with the same pixel error length, if their directions align with the direction from
the principal point to the 2D reference points, then the errors in pixel lengths
remain consistent after mapping f. Therefore, without loss of generality, we
select a set of points {(u, v)|u = up+z,v = vo, z € [10,250]} as the 2D reference
points. Assuming a pixel error length of 0.5 during point extraction, the errors
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Fig. 4: Errors of mapping f versus pixel Fig. 5: Errors of mapping f versus dis-
errors when extracting 2D reference tances between 2D reference points and
point the principal point

in the distances from the origin to the virtual 2D reference points are computed.
These results are shown in Figure 5.

The line graph demonstrates that the error introduced by the mapping f
increases with the distance between the 2D reference points and the principal
point, with an accelerating trend. Consequently, selecting 2D reference points
closer to the principal point in the fisheye camera image can help reduce the
pixel errors induced by the mapping f. Therefore, it is advisable to choose points
nearer to the principal point as 2D reference points.

5 Experiment

We used a fisheye camera with a focal length of 1.4 mm and a 180° field of view,
as shown in Fig. 6.

Fig. 6: Fisheye camera Fig. 7: Fisheye camera photo

The fisheye camera was initially calibrated using planar grids to determine its
projection matrix K and lens parameter £&. The calibration results are shown in
Table 3.

A 7 x 9 flat chessboard was placed in the environment. The fisheye camera
was positioned above the chessboard and kept still for one minute, with the
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Table 3: Calibration result of fisheye camera

Parameter Value
608.499 0.654 360.036
K 0 607.862 214.209
0 0 1
£ 1.177

pose estimated every second using the method described in Section 3. An ex-
ample photo of the setup is shown in Fig. 7. The results are compared with the
calibration results obtained using OpenCV 3.0, as depicted in Fig. 8.

—— ours —— Ours -9 “— ours
102 —— OpenCV —64 —+— OpenCV ~10 —— OpenCV
- - 1] ey wvwv)‘m"‘ﬁr ral
‘;-(/ 100 i’; —-66 o
N-12
) = P
& ? (7&? o R -3 e
98 —68 emtaamm At -13
-14
96 =70 =15
0 20 40 60 0 20 40 60 0 20 40 60
Time(s) Time(s) Time(s)

(a) Euler angle around z axis (b) Euler angle around y axis (¢) Euler angle around z axis

versus time versus time versus time
2
6 —— Ours —— Ours 26 —— Ours
—— OpenCV —+ Opencv —— OpenCV
T4 - g
3
S S
= =2 N2
2 2 3 2
5 &
£ Ea 20
0 18
-6
-2 16
0 20 40 60 0 20 40 60 0 10 20 30 40 50 60
Time(s) Time(s) Time(s)

(d) Translation in z direc- (e) Translation in y direction (f) Translation in z direction
tion versus time versus time versus time

Fig. 8: Comparison results for the fisheye camera pose estimation

In this experiment, the pose of the fisheye camera remained constant, so the
Euler angles and translation vectors should also be consistent. The standard
deviations of the Euler angles around the z, y, and z axes, and those of the
three components of the translation vectors estimated by our method are 0.221,
0.098, 0.242 and 0.092, 0.028, 0.128, respectively. In comparison, the standard
deviations estimated by OpenCV are 0.093, 0.082, 0.019 and 1.250, 0.436, 2.099,
respectively. This indicates that our method is significantly more stable than
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OpenCV in estimating translation vectors, but slightly less stable in estimat-
ing Euler angles. Additionally, our method took 0.927 seconds to estimate the
poses of 60 images, which is 13.039% faster than the 1.066 seconds required by
OpenCV.

6 Conclusion

In this article, we proposed a pose estimation method for fisheye cameras based
on the EPnP algorithm. Our method has a time complexity of O(n) and fully
leverages the broader environmental information captured by fisheye cameras.
An error analysis was conducted, and an experiment was carried out demon-
strating that our method is more stable in estimating translation vectors and
more efficient compared to OpenCV.

Future work will involve conducting more comprehensive experiments to fur-
ther validate the proposed pose estimation method. Additionally, we aim to
develop a pose estimation technique for stereo fisheye cameras.
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