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Abstract. As the application of artificial intelligence continues to ex-
pand, complex decision-making problems such as multi-player gaming,
multi-robot planning and multi-vehicle controlling have become new chal-
lenges for machine intelligence. Multi-Agent Reinforcement Learning (MA-
RL) which concentrates on learning the optimal strategies of multiple
agents that coexist in a shared environment, is a valid method to solve
multi-agent decision-making challenges. Among MARL Algorithms, the
MAPPO algorithm has won the favor of machine learning community
due to its superb performance. However, the original MAPPO algorithm
suffers from sparse reward issues. To overcome the sparse rewards prob-
lem and achieve sufficient learning in complex task, this paper proposes a
IGE-MAPPO which uses a IGM that generates a variable-density and bi-
domain reward signal, and conducts experiments on SMAC. The results
show that the IGE-MAPPO algorithm can adapt to a variety of complex
environment and has improved performance compared with other typical
MARL algorithms.

Keywords: Multi-Agent Proximal Policy Optimization · Sparse Re-
wards · Incremental Goals

1 Introduction

As the application of artificial intelligence continues to expand, multi-agent
decision-making problems such as multi-player gaming, multi-robot planning and
multi-vehicle controlling have become new challenges for machine intelligence [1].
These years, with DeepMind’s AlphaStar [2] surpassing professional level perfor-
mance in Go and StarCraft II and OpenAI Five [3] beating world champions in
Dota II, machine intelligence has made remarkable progress in handling complex
tasks and effectively responded to the multi-agent decision-making challenges [4].
These milestones and successes are largely powered by Multi-Agent Reinforce-
ment Learning (MARL) algorithms. MARL is a type of Reinforcement Learning
(RL) which concentrating on learning the optimal strategies of multiple agents
that coexist in a shared environment. In the MARL, the Multi-Agent Proximal
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Policy Optimization (MAPPO) is an on-policy MARL algorithm which uses im-
portance sampling to perform off-policy correction [5]. This algorithm maintains
stable and robust learning, and performs well in cooperative tasks [6]. However,
despite the success of the MAPPO, there are still some challenges when dealing
with sparse reward problems [7] [8].

This paper focuses on sparse reward problem and present a incremental goal
enhanced MAPPO (IGE-MAPPO) algorithm which deploys a incremental goal
model (IGM) that generates a variable-density and bi-domain reward signal.
This rewarding model can not only improve exploration efficiency, but also avoid
sub-optimal policy from carefully shaped reward. The proposed algorithm are
evaluated on StarCraft Multi-Agent Challenge (SMAC) [9] platform which is a
benchmark problem in MARL [10]. Compared with other typical MARL algo-
rithms, the efficiency of the IGE-MAPPO algorithm is demonstrated and veri-
fied.

2 Preliminaries

2.1 Dec-POMDP

The decentralized partially observable markov decision process (Dec-POMDP),
a generalization of markov decision process (MDP), is tailored to describe a
MARL system which multiple agents collaborates to accomplish tasks with only
the access of their own local observation [11]. Such model can provide a more
accurate description of the multi-agent team decision problems in the real world.
In the Dec-POMDP [12], the key elements can be formulated as a 8-tuple <
N,S,

{
b0
}
, {Ai} , {Oi} , P,R, γ > where N is the finite set of agents’ indices

and n is the number of agents, S is the finite set of states, b0 ∈ ∆(S) is the
initial state distribution, Ai is the finite set of available actions for agent i and
A = ×i∈NAi is the set of joint actions, where × denotes the Cartesian product
operator and a represents a joint action, Oi is the finite set of observations for
agent i and O = ×i∈NOi is the set of joint observations, where o denotes a
joint observation, P is the state transition and observation probability function,
where P (s′,o | s,a) denotes the probability which the agents take a joint action
a under state s and receive a joint observation o under a new state s′, R is the
reward function and R : S ×A×S → R and r denotes the immediate reward of
agents, γ denotes the discount factor of return. The objective of Dec-POMDP is
to learn a joint policy π(a | o) =

∏n
i=1 πi(ai | oi) that maximizes the expected

discounted cumulative reward J(π) = Êt

[∑T
t=0 γ

trt

]
.

2.2 CTDE Paradigm

In the MARL, there are typically three learning paradigms [13]: fully centralized
learning, fully decentralized learning and centralized training with decentralized
execution (CTDE). The fully centralized learning which uses a center controller
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to manage all the agents’ action is suffering from the huge amount of compu-
tational demand in the central controller [14] [15]. On the other hand, the fully
decentralized learning which isolates the agents to make their own decision both
can’t reach the global optimal of the coordinated agents [16] [17]. To solve these
problems, CTDE [18] allows agents to access the global information and learn
the coordinated policy in the training phase and lets agents to act based on local
situation in the executing phase. Such learning framework can not only encour-
age the agents to learn the optimal policy, but also speed up the decision process
of individual agents, which has made the CTDE a major scheme for MARL [19].

2.3 PPO

The proximal policy optimization (PPO) [13], the core of MAPPO, is a popular
policy gradients based algorithm in deep reinforcement learning algorithm. This
algorithm is built on trust region policy optimization (TRPO) algorithm [14] and
is able to avoid large policy updates that may slow down training performance
by limiting the deviation of new policies from old ones [15].

There are typically two types of PPO algorithm: PPO-Penalty and PPO-
Clip [16]. Among them, PPO-Clip uses clipping technique to balance the im-
provement of the new strategy with maintaining stability. The objective function
of PPO-Clip can be written as Eq. 1.

JCLIP
PPO (θ) = E

[
min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)

]
(1)

where θ denotes the parameter associated with the policy network, the variable
t denotes the specific time step under consideration, the function At denotes the
advantage function at time step t, ϵ controls the degree of clipping, rt(θ) denotes
the likelihood ratio between the new policy and the old policy at time step t, as
defined by Eq. 2.

rt(θ) =
πθ(at|st)
πθold(at|st)

(2)

where πθ(at|st) denotes the probability of selecting action at in state st according
to the new policy.

The optimization of this objective function can not only maximize the ex-
pected reward of the RL agent, but also prevent the policy from tremendous
changing, which ensures the stability of learning. In the objective function, the
first term encourages the policy to move in the direction of higher advantage,
while the second term restricts the size of the policy update by clipping the
likelihood ratio.

3 Method

The sparse reward task [17] [18] seldom gives reward feedback to the MARL
agent until the mission is done, which has been a major problem in RL. With the
joint action space growing exponentially in MARL, such learning problem can
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pose a severe challenge to the exploration ability of MARL algorithms. MAPPO
algorithm uses a clipping mechanism to prevent huge policy updating, which
could suffer from the inadequate exploration and low convergence rate during a
sparse reward scenario [7] [8].

3.1 Complete Algorithm Flow

The major difficulty of sparse reward scenario is that the agents cannot be moti-
vated and guided by a goal far away from the initial state. Such scenario is hard
even for humans. A direct way of solving sparse reward problem is to decompose
the goal into multiple sub-goals that closer to the initial state. Following this
concept, the proposed IGE-MAPPO algorithm deploys a IGM that generates
a variable-density and bi-domain reward signal. This rewarding model can not
only improve exploration efficiency, but also avoid sub-optimal policy from care-
fully shaped reward. The principle and structure diagram is shown in Figure 1.
The pseudocode of the IGE-MAPPO algorithm is shown in Algorithm 1.

Fig. 1. Principle and structure diagram of IGE-MAPPO

Algorithm 1 IGE-MAPPO
Initialize: policy network with parameter θ and value network with parame-

ter ϕ, maximum episodes M , maximum timesteps T , number of agents N ,
learning rate α, experience replay buffer D, mini-batch size K, incremental
goal set IG and incremental goal numbers Q

1: for i = 1 to M do
2: Reset training environment;
3: Reset incremental goal set IG for each agent;
4: for t = 0 to T do
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5: for a = 0 to N do
6: Observe the environment oat , execute the action aat based on the policy

πa
θold

;
7: Calculate the distance between the current observation and the in-

cremental goal dc(oat , g);
8: for q = 1 to Q do
9: if dc(o

a
t , g)==daq then

10: Get incremental goal completeness reward (rcompleteness
t )a;

11: Delete daq from incremental goal set IGa;
12: end if
13: end for
14: Get effectiveness reward (reffectivenesst )a;
15: Get environment reward (renvironment

t )a;
16: Calculate the entire reward r̃at for agent a;
17: Collect a transition of all agent τt+={sat , aat , r̃at , sat+1};
18: end for
19: Store trajectories of all agent τt into buffer D;
20: Compute reward-to-go R̂t and IGE return GIGE

t ;
21: Estimate advantages Ât via GAE based on both the value function and

the IGE value function V IGE
π (s);

22: for k = 1 to K do
23: Random sample a transition data τr of all agent from buffer D;
24: Optimize J total

IGE−MAPPO using stochastic gradient ascent;
25: end for
26: Update θ and ϕ;
27: end for
28: end for

3.2 Incremental Goal Model

The IGM, the core of IGE-MAPPO, is designed to provide extra bi-dimensional
rewards in the sparse reward tasks based on the incremental goals. To charac-
terize incremental goals in a certain task, one has to define what the goal is. In
MARL, the goal of learning agents represents a family of global state vectors s
that satisfy certain conditions. In these vectors, there are 3 type of terms: the
term sC that directly determine the completeness of a task, the term sE that
directly affect the efficiency of a task and the term sI that indirectly affect the
task. Under such setting, the definition of incremental goals in this paper can
be characterized as a series of global state vectors s that have certain distance
dc with the goal, which is described as follows:

Definition 1. The incremental goals of MARL agents in a task is a set of global
state vectors that satisfy

ig := {s(sC , sE , sI) | dc(s, g) ∈ IG, IG = {d1, d2, ..., dQ}} (3)
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dc(sinitial, g) =

Q∑
q=0

xq = x0︸︷︷︸
dQ

+ x1︸︷︷︸
dQ−1

+...+ xQ︸︷︷︸
d1

(4)

where d(·, ·) represents the L2 norm of the difference between certain component
of two global state vectors, dc(·, ·) denotes the L2 norm based on the sC compo-
nent, Q is the number of incremental goals, and IG is the distance set used to
control the density of incremental goals.

After the incremental goals being defined, multiple incremental goals can be
generated to guide the learning process of MARL agents. In order to prevent
the MARL agents from local optimal caused by incremental goals, the distance
value from IG are generated using a geometrical progression which can create
incremental goals with decreasing density. This decreasing density setting of sub-
goals performs a "sports-training" style which provides a intensive guidance to
the agents in the early stage and gives adequate exploration to the agents in the
later stage of learning.

Following the incremental goals produced above, the learning rewards can
be presented in a bi-dimensional view which includes the completeness of the
task and the effectiveness of the task. In the completeness view, positive rewards
rcompleteness are given whenever the agents achieve a incremental goal or the final
goal in the whole learning process. In the effectiveness view, negative rewards
reffectiveness are given to encourage agents’ exploration in the late training stage.
Concretely, the bi-dimensional rewards can be calculated through Eq. 5-7:

rIGE
t = rcompleteness

t + reffectivenesst (5)

rcompleteness
t = e1Q, if dc(st, subgq) ⩽ δ (6)

reffectivenesst = −e2de(st, sinitial), if t ⩾ T/2 (7)

where rcompleteness denotes the rewards of task completeness, reffectiveness rep-
resents the rewards of task effectiveness, T is the total steps of training episode,
e1 and e2 are the .

After the reward rIGE is defined, the entire rewards r̃ that the agents can
receive is determined by r̃t = renvironment

t + rIGE
t , the total discounted return

of agents and the value function based on certain policy π can be calculated
through Eq. 8 and Eq. 9.

GIGE
t =

T−t−1∑
k=0

γkr̃t+k+1 (8)

V IGE
π = E

[
GIGE

t | st = s
]

(9)

where GIGE
t represents the discount cumulative rewards from step t + 1 to the

final step, γ is the discount factor and γ ∈ [0, 1]).
In order to perform proper training efficiency and ensure adequate explo-

ration, a total IGE-MAPPO objective function is formulated and aimed to be
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maximized. Such a objective function can not only concerns the policy objective
and the value loss, but also deploys a policy entropy bonus, which is determined
by Eq. 10 and Eq. 11.

(JV alue
ϕ )(i) = (Vϕ(s

(i))− (Vtarget)
(i))2 (10)

J total
IGE−MAPPO(θ) =

N∑
i=1

E
[
(JClip

PPO(θ))
(i) − c1(J

V alue
ϕ )(i) + c2H(s(i), πθ)

]
(11)

where N is the number of agents, (Vtarget)
(i) = V IGE(s(i)) + Â(i) represents

value target which is the sum of IGE value and advantage value of each agent,
H(s(i), πθ) is the policy entropy regularization term, c1 and c2 are coefficients
hyperparameters.

4 Experiments

4.1 Environment

SMAC [9] is a MARL test bed based on the famous real-time strategy game Star-
Craft II, integrating various team fighting scenes where units are manipulated
by individual agents that act with their local observations. These scenes natu-
rally satisfy the Dec-POMDP properties and the CTDE paradigm, which poses
cooperative challenges to the multi-agent learning systems. Due to the represen-
tativeness of these scenario, SMAC has been regarded as a universal benchmark
problem to test and evaluate the state-of-art algorithms in the MARL commu-
nity. According to the configuration of SMAC, scenarios are divided into 3 cate-
gories: easy, hard and super-hard, while the fairness and the types of controlled
units can also be set. In this paper, the experiment focuses on the most chal-
lenging scenarios that are heterogeneous and asymmetric, and have difficulties
of hard and super-hard. Additionally, the reward using in the training process
is sparse reward setting. Specifically, the experimental scenarios chosen in this
paper are 5m_vs_6m, 27m_vs_30m, MMM2, and 3s5z_vs_3s6z, as shown in
Figure 2 (a) (b) (c) (d). The configuration like ally units, enemy units and type
of the chosen scenarios are listed in Table 1. The specific scenario settings are
presented in Table 2

Table 1. The configuration of the chosen scenarios in SMAC

Scenario Name Ally Units Enemy Units Type

5m_vs_6m 5 Marines 6 Marines homogeneous&asymmetric
27m_vs_30m 27 Marines 30 Marines homogeneous&asymmetric

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 3 Marauders & 8 Marines heterogeneous&asymmetric
3s5z_vs_3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots heterogeneous&asymmetric
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Fig. 2. Visualization of different types of multi-agent environment. (a) (b) (c) (d) are
the 5m_vs_6m scenario, 27m_vs_30m scenario, MMM2 scenario, and 3s5z_vs_3s6z
scenario in SMAC, respectively.

Table 2. The settings of the chosen scenarios

Scenario Name Number of Actions Number of Agents State Dimension Observation Dimension Time-step limit

5m_vs_6m 12 5 98 55 70
27m_vs_30m 36 27 526 285 180

MMM2 16 10 246 110 180
3s5z_vs_3s6z 15 8 227 136 170

4.2 Performance Evaluation

Due to the representativeness and effectiveness [19] [20], this paper chose MAPPO,
Independent PPO (IPPO) [21] and Multi-Agent Deep Deterministic Policy Gra-
dient (MADDPG) [22] as benchmark algorithms for comparative experiment.
MAPPO is a popular on-policy MARL algorithm that takes the advantages of
importance sampling method and perform well in both continuous and discrete
action spaces. IPPO is a simple on-policy MARL algorithm and a decentral-
ized variant of PPO where each agent independently optimizes its own policy
without explicit communication or coordination. Such a MARL algorithm can
handle both discrete and continuous action spaces. MADDPG is a famous off-
policy MARL algorithm which deploys a centralized Q-function taking obser-
vations and actions from all the agents to alleviate the non-stationarity issue
and stabilize multi-agent training. Specially, in order to make MADDPG solve
discrete tasks, this paper uses a MADDPG with softmax output settings. For
each algorithm, this paper uses recommended hyperparameters, and trains the
MARL agents parallelly. The performance data of algorithms for the selected
tasks are provided in Figure 3, which can presents a clear view on the efficiency
of each algorithms across different challenges.

In Figure 3, MAPPO achieved a proper performance on all tasks, providing a
relatively stable learning process on all the tasks and converging to good policies
in all challenges. However, MAPPO had a low convergence rate and suffered from
high computational overhead due to its frequent sampling of the environment.
IPPO showed some convergence, but its efficiency was limited due to the lack
of effective communication and collaboration among agents, especially in the
environment with a large number of controlled agents. MADDPG with softmax
outputs showed some performance and achieved acceptable results, but had an
unstable learning behavior and training process, and act poorly in super hard



MARL for Sparse Reward Tasks using Incremental Goal Enhanced Method 9

Fig. 3. The figure showcases the training results of multiple algorithms across various
multi-agent environment, including MAPPO, IPPO, MADDPG, and PG-MAPPO.

tasks. The problem of slow convergence rate and low peak reward in large-
scale environment within MADDPG were also exposed in the experiment. In
comparison,

From the performance data, it can be seen that the proposed IGE-MAPPO
has a explicit advantage over existing MARL aLgorithms, and its performance
and efficiency surpasses the others in multiple aspects. Specifically, IGE-MAPPO
presents faster convergence rates and achieves the average win rates of 82%, 84%
and 85% in super hard tasks. These results shows the remarkable learning ability
in handling large-scale multi-agent coordinated tasks.

5 Conclusions

This paper improves the MAPPO algorithm’s capabilities of overcoming sparse
reward problem, adds a IGM which generates a variable-density and bi-domain
reward signal to the typical MAPPO algorithm, introduces hyperparameters in
the cumulative return and the value function of each agent training process and
the upper and lower bounds of clipping function. Further more, the policy objec-
tive, value loss and the policy entropy bonus is integrated to the IGE-MAPPO
total objective function. In this paper, the efficiency of the IGE-MAPPO algo-
rithm is verified by different virtual environment. The simulation results show
that the IGE-MAPPO algorithm has strong learning ability and strong gener-
alization ability, and can well complete the tasks in various environment. The
convergence and stability of the algorithm are outstanding. In summary, this
paper proposes a model that can guide the MAPPO to overcome sparse reward
problems and improve training efficiency.
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