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Abstract. A cooperative agentic framework is presented in this paper,
which enhances function calling capabilities in Large Language Model
(LLM) powered agents while optimizing resource utilization. Weaker and
stronger agents are combined through a consensus-based method in this
approach, addressing the challenge of balancing performance with com-
putational costs. The framework is evaluated across four diverse test
suites: Open Weather, The Cat API, Home Search, and Booking, with
the number of calls to weaker agents, consensus thresholds, and fallback
strategies being manipulated. It is shown by the results that success
rates are significantly improved by increasing calls to weaker agents and
implementing strong fallback mechanisms, particularly for initially lower-
performing agents. Notably, high success rates comparable to GPT-4 at
significantly lower costs were achieved by models like Claude-3-Haiku
and DeepSeek-Coder. Particular efficacy is demonstrated by the frame-
work in complex scenarios, where performance was substantially boosted
by strategic fallbacks. A practical solution for deploying LLM-powered
agents in resource-constrained environments without compromising per-
formance is offered by this approach, potentially increasing the accessi-
bility and adoption of powerful agents in real-world applications ranging
from API interactions to complex systems.

Keywords: Large Language Model · Function Calling · Consensus-Based
Approach · Multi-Agent Systems.

1 Introduction

LLM powered AI agents [42, 7, 23, 17, 16, 20, 36, 11, 12, 35, 15] have revolution-
ized various tasks, from creative writing to code completion, necessitating a
1 ∗corresponding author
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deeper understanding of how to optimally utilize these powerful yet resource-
intensive tools. The ability to perform function calls is of paramount importance
for these models. As LLMs and AI agents continue to evolve, their ability to in-
teract with external systems through function calls becomes increasingly crucial.
As these agents grow in size and capability, they present a significant trade-off
between performance and cost. Stronger models generally offer superior results
but require substantial computational resources, while weaker models are more
efficient but may lag in performance [41, 31]. This trade-off poses a critical chal-
lenge for researchers and practitioners with limited budgets, time constraints,
or environmental concerns. Deciding which model to use for a given task is not
always straightforward, especially when considering the diverse range of query
difficulties encountered in real-world applications.

Recent works have attempted to optimize the use of agents by employing
various strategies. Two main approaches have emerged: routing [8, 40], where
queries are directed to either a weak or strong model based on a decision criterion,
and cascading [29, 13, 4], where queries always start with the cheaper model
and escalate to the more expensive one if necessary. However, these methods
often rely on auxiliary models or repeated calls to weaker agents, introducing
additional complexity and potentially undermining the cost-saving objectives
they aim to achieve.

To address the above problems, this paper proposes a novel cooperative
framework for enhancing the function calling capabilities of agents while op-
timizing resource utilization. The approach is inspired by the observation that
many tasks contain a subset of "easy" queries that can be effectively handled
by weaker, less expensive models. This insight is leveraged to develop a system
that combines the efficiency of weaker models with the power of stronger ones,
employing a consensus-based approach inspired by self-consensus techniques.

Our framework focuses specifically on function calling tasks, which are crucial
for integrating agents with external systems and APIs. The approach is evaluated
using four diverse test suites: Open Weather, The Cat API, Home Search, and
Booking, all of which are introduced in [37]. These test suites cover a range of
scenarios from real-world API interactions to fictional, complex booking systems,
providing a comprehensive assessment of function calling capabilities.

The key contributions of this work are as follows:

1. A Cooperative Agentic Framework: A cooperative framework is introduced,
combining both weaker and stronger agents to optimize function calling per-
formance while minimizing costs.

2. Consensus-Based Query Routing: This framework employs a consensus -
based approach to determine when to route queries to stronger agents, ef-
fectively avoiding the need for auxiliary models or excessive repeated calls.

3. Evaluation and Strategies for Inconsistent Responses: A comprehensive eval-
uation of the framework is presented across four diverse test suites, demon-
strating its effectiveness in balancing performance and cost. Additionally,
strategies for handling inconsistent responses from weaker models are ex-
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plored, either by selecting from the weaker agent’s outputs or by falling
back to stronger agents.

Our findings suggest that understanding and leveraging the inherent sig-
nals from agents can lead to more efficient and cost-effective deployment strate-
gies, potentially increasing the accessibility and adoption of these powerful tools
across various domains and applications.

2 Background and Related Work

Recent advancements in large language models have shown impressive re-
sults across various tasks, including function calling [6]. These models, often
referred to as foundation models [5], have demonstrated remarkable capabilities
in complex reasoning [34] and synergizing reasoning with action [39]. However,
the performance gap between weaker and stronger agents remains significant,
especially in complex scenarios [27]. This disparity has motivated research into
methods for leveraging stronger models to improve the performance of weaker
ones [32], as well as exploring the fundamental pattern recognition capabilities of
these models [24]. Despite these advancements, efficiently balancing performance
and computational cost remains a critical challenge in the field.

At the core of this cooperative agentic framework is a decision-making mech-
anism that determines whether to route a query to the stronger agent based on
the output of the weaker agent. The ideal decision maker should only invoke the
stronger agent when the weaker agent’s answer is likely to be incorrect, thereby
minimizing total cost while maintaining overall task performance. To achieve
this, a novel approach based on the "answer consensus" of the weaker agents is
proposed.

Answer Consensus and Sampling Strategies Our approach is inspired by the
work of [32], which demonstrated that answer consistency and consensus can
enhance performance in reasoning tasks. Rather than relying on a single answer,
multiple answers are sampled for each query, and their consensus is assessed.
The hypothesis is that a high level of consensus among sampled answers reflects
the weaker agent’s confidence in solving the query, suggesting that the most
consistent answer is likely correct.

To implement this idea, the work of [32] is expanded upon, considering two
sources of sampling consensus:

1. In-Distribution Sampling. Multiple answers are generated using the same in-
structions for the weaker agents, achieved by setting a non-zero temperature
during inference.

2. Diverse In-Context Demonstrations. Answers are sampled using two distinct
sets of task demonstrations to ensure diversity in the generated responses.
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Consensus-Based Decision Making In this method, the consensus of the weaker
agent’s answer samples is calculated through a voting mechanism. For a given
query Q, the set of answers is denoted as (Aw1, Aw2, . . . , AwK), where K is the
number of samples. The most consistent answer is selected as the one with the
highest agreement among the samples. Consensus is measured using an agree-
ment score s:

s =

∑K
i=1 1[Awi = Aw]

K
(1)

where Aw is the answer from the weaker agent and 1[·] is an indicator function.
If s exceeds a predefined threshold, the weaker agent’s answer is accepted if the
consensus score meets a predefined threshold; otherwise, the query is routed to
the stronger agent for resolution.

Tool-Augmented Language Models Recent research has demonstrated that LLMs
can significantly enhance their capabilities by utilizing external tools. Work [30]
introduced Toolformer, a model trained to decide which APIs to call, when to
call them, and how to incorporate the results into future token predictions. This
self-supervised approach achieved improved zero-shot performance across various
tasks without sacrificing core language modeling abilities.

Building on this concept, work [28] proposed ToolLLM, a comprehensive
framework for tool use in LLMs. ToolLLM encompasses data construction, model
training, and evaluation, addressing the limitations of open-source LLMs in tool-
use capabilities. Their approach demonstrated remarkable ability in executing
complex instructions and generalizing to unseen APIs.

Evaluation of Tool Utilization Capabilities To assess the effectiveness of tool-
augmented LLMs, several benchmarks and evaluation frameworks have been
developed. [19] introduced API-Bank, a benchmark specifically designed for tool-
augmented LLMs. This comprehensive evaluation system consists of 73 API tools
and assesses LLMs’ capabilities in planning, retrieving, and calling APIs.

The study [10] proposed T-Eval, a framework that evaluates the tool utiliza-
tion capability of LLMs step by step. T-Eval decomposes tool utilization into
multiple sub-processes, providing a more fine-grained analysis of LLMs’ compe-
tencies in this domain.

Enhancing Open-Source LLMs While closed-source LLMs have shown impres-
sive tool manipulation capabilities, there has been a growing interest in enhanc-
ing open-source models to achieve similar performance. The research [37] inves-
tigated methods to improve the tool manipulation capabilities of open-source
LLMs with practical amounts of human supervision. Their work demonstrated
that techniques such as programmatic data generation, system prompts, and
in-context demonstration retrievers could significantly boost the performance of
open-source LLMs in tool manipulation tasks.
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Multi-Agent Frameworks Recent researches have explored the potential of multi-
agent systems to enhance LLM performance. Work [18] proposed a sampling-
and-voting method that scales LLM performance with the number of agents
instantiated. This approach showed improvements across various LLM bench-
marks, particularly for more difficult tasks.

In a related vein, the work [21] introduced CMAT, a multi-agent collaboration
tuning framework designed to enhance weak language models. CMAT fosters col-
laborative learning and real-time adaptation among multiple intelligent agents,
improving context-awareness and long-term memory.

Reasoning Techniques in LLMs Several techniques have been developed to im-
prove the reasoning capabilities of LLMs, which are crucial for effective tool uti-
lization. The research [33] demonstrated that chain-of-thought prompting sig-
nificantly enhances the ability of large language models to perform complex
reasoning. This approach involves generating a series of intermediate reasoning
steps, leading to improved performance on various tasks.

Building on this concept, the study [32] introduced self-consistency, a decod-
ing strategy that samples multiple reasoning paths and selects the most consen-
sus answer. This method has shown significant improvements in arithmetic and
commonsense reasoning benchmarks.

Authors in [9] proposed the Program of Thoughts (PoT) prompting method,
which disentangles computation from reasoning in numerical reasoning tasks.
PoT uses language models to express the reasoning process as a program, rele-
gating computation to an external computer.

Cost-Effective LLM Deployment As LLMs grow in size and capability, there
is an increasing focus on cost-effective deployment strategies. The research [8]
introduced FrugalGPT, a framework that explores various strategies to reduce
inference costs associated with using LLMs. These strategies include prompt
adaptation, LLM approximation, and LLM cascade.

The research [29] proposed a framework called "Fly-swat or cannon" (FORC)
for cost-effective language model choice. FORC uses a meta-model to assign
inputs to appropriate LLMs, aiming to achieve high overall performance at low
cost.

In conclusion, while significant progress has been made in enhancing LLMs’
tool utilization capabilities and developing cost-effective deployment strategies,
there remains ample room for improvement in creating cooperative frameworks
that can further enhance function calling capabilities in language models.

3 Methodology And Experiments Setting

This methodology aims to enhance the performance of function calling tasks
through a collaborative framework while maintaining efficiency in resource-constrained
environments. The core of this approach leverages multiple outputs from weaker
agents to reach a consensus, with fallback to stronger agents when necessary.
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1. Baseline Performance: This work begins by establishing baseline performance
metrics for multiple Language Models (LLMs). This initial step involves ex-
ecuting each model on an identical set of function calling tasks to deter-
mine initial accuracy, consensus, and resource utilization. A diverse range of
LLMs, including both weaker and stronger models, is selected. To ensure a
comprehensive evaluation, a test suite encompassing function calling tasks of
varying complexity and domains is created. Each model undergoes multiple
runs through this test suite to account for potential output variations. Key
performance indicators, including accuracy, consistency, and resource uti-
lization, are recorded, laying the groundwork for subsequent comparisons.

2. Consensus-Based Approach: The next phase implements a consensus-based
approach. For each query, the weaker agent is prompted multiple times to
generate function calling code snippets. This repetitive prompting captures a
range of possible responses and identifies patterns in the generated outputs.
An optimal number of prompts is determined based on the balance between
accuracy and computational cost. To encourage diverse outputs, a prompting
strategy is implemented that introduces slight variations in the input. All
generated code snippets are stored in a structured format for easy analysis.

3. Consensus Check: During the consensus check phase, regular expressions are
utilized to analyze the generated code snippets for consensus. A response is
considered to have reached consensus if a majority of the snippets (quorum)
are identical. This majority rule filters out inconsistencies and identifies the
most reliable response from the weaker agent. Robust regular expressions are
developed to handle formatting variations while still identifying functionally
equivalent code snippets. Additionally, a scoring system is implemented to
determine the degree of similarity between non-identical snippets. Based on
empirical testing and specific use case requirements, a threshold for consensus
is set.

4. Response Selection Strategies: When no clear majority (less than half) is
achieved, two alternative strategies are implemented.
– Weak Agent Selection. The first is a weak agent selection strategy, where

the plurality response (the one with the most occurrences, even if not a
majority) is chosen, or a random response is selected from the generated
set. A weighted random selection method is implemented, favoring re-
sponses with higher occurrence frequencies, and a confidence score based
on the similarity of non-identical responses is considered for incorpora-
tion.

– Strong Agent Fallback. The second strategy is a strong agent fallback,
routing the query to a more powerful agent (e.g., GPT-4) to generate the
function call code. Criteria are developed for determining when to fall-
back to the stronger agent, and a caching mechanism is implemented to
store strong agent responses for similar queries, reducing computational
overhead in future runs.

5. Performance Evaluation: Performance evaluation is a crucial component of
the method. The results of the collaborative framework, including both re-
sponse selection strategies, are compared against baseline performances, fo-
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cusing on metrics such as accuracy, consensus, and resource utilization. A
comprehensive evaluation framework is developed, considering the success
rate of function calls, the variability of responses across multiple runs, and
computational costs, including processing time for weak agent consensus
generation, the frequency and impact of strong agent fallbacks, and over-
all system latency and throughput. Automated testing pipelines are imple-
mented to facilitate large-scale evaluation across diverse scenarios, and ab-
lation studies are conducted to isolate the impact of individual components
of the framework.

Based on the evaluation results, optimization is performed. Consensus thresh-
olds and prompting strategies are adjusted to optimize the trade-off between
accuracy and resource utilization. Experiments are also conducted with different
weak agent models and ensemble techniques to enhance baseline performance.
Furthermore, adaptive strategies are developed to dynamically adjust the frame-
work’s parameters based on task characteristics and real-time performance met-
rics.

Scalability and robustness testing are conducted to assess the framework’s
performance under various load conditions and edge cases. Stress tests are per-
formed to determine system capacity and identify bottlenecks, while network
latency and service disruptions are simulated to evaluate the framework’s re-
silience. A wide range of input types, including edge cases and potentially mal-
formed queries, are tested to ensure robust error handling.

Fig. 1: Illustration of the proposed method.

Through this comprehensive approach, a practical framework is provided to
researchers and practitioners for deploying agents in resource-constrained en-
vironments without compromising performance. The detailed methodology fa-
cilitates experiment replication while offering insights into potential areas for
further optimization and research.
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3.1 Test Suites

Open Weather This suite tests the agents’ ability to make API calls for weather
data retrieval[3]. It includes tasks such as querying current weather conditions,
forecasts, and historical weather data for various locations, simulating real-world
scenarios where accurate interpretation and API usage are crucial.

The Cat API Focused on interactions with a REST API for cat-related opera-
tions this suite evaluates the models’ capability to handle HTTP methods and
parse JSON responses effectivelycitethecatapi. Tasks involve retrieving informa-
tion about different cat breeds, searching for images of cats, and performing
CRUD operations (Create, Read, Update, Delete) on user-generated cat-related
data.

Home Search Utilizing a fictional API for home searching, this suite evaluates the
models’ performance on domain-specific tasks. It tests the ability to understand
and generate queries for property search parameters, such as location, price
range, number of bedrooms, and property type, assessing how well models handle
detailed and structured data requests.

Booking Designed to test complex dependencies in trip and hotel booking sce-
narios, this suite challenges the agents with multi-step, interdependent API calls.
Tasks include booking flights, hotels, and car rentals with specific requirements
and constraints, managing reservations, and handling cancellations and modifi-
cations, simulating real-world travel booking systems.

To systematically evaluate the performance and adaptability of the coopera-
tive framework, three main control variables were established in the experimental
setup:

– Number of Calls (num): Represents the number of times an agent is called
for each query. Increasing the number of calls is hypothesized to improve the
consensus and accuracy of the responses due to the diversity in generated
outputs.

– Consensus Threshold (vote): This threshold determines when a majority
consensus has been achieved among the responses generated by the agent.
A response is considered as the majority consensus if it reaches or exceeds
this threshold.

– Fallback Strategy (fallback): Determines the course of action when the ma-
jority consensus is not reached:
1. fallback=no: Only one call is made, and the response from this single

call is used.
2. fallback=weak: The most frequent response among the generated ones

is chosen.
3. fallback=strong: Engages a stronger agent (such as GPT-4 using Greedy

Decoding) to handle the query.

These control settings lead to the following experimental conditions:
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– Condition A (num=1; vote=1; fallback=no): Basic condition with a single
call and no fallback.

– Condition B (num=3; vote=0.5; fallback=weak): Multiple calls with selec-
tion of the most frequent response if no clear majority is found.

– Condition C (num=5; vote=0.5; fallback=weak): Increased number of calls,
still selecting the most frequent response under weak fallback.

– Condition D (num=3; vote=0.5; fallback=strong): Same as B but with a
strong fallback to a more capable agent if needed.

– Condition E (num=5; vote=0.5; fallback=strong): Increased calls with strong
fallback, providing a robust test of fallback efficacy.

Diversity Additionally, to introduce diversity and mitigate potential bias in re-
sponse generation, the temperature parameter was set to 0.5. This setting helps
in diversifying the outputs, making them less deterministic and more repre-
sentative of different potential responses. During the retrieval of examples for
generating prompts, the order of examples is shuffled to further ensure that the
responses are not influenced by any fixed pattern in the data presentation [22,
25].

3.2 Overview of Models Used by Agents

To assess the effectiveness of the framework across a spectrum of model
capabilities, the following language models were included in the experiments,
with a brief overview of their characteristics, performance, and costs provided.

Baichuan-13B and Baichuan2-Turbo [38] from Baichuan-AI. These models
are trained on a whopping 2.6 trillion high-quality tokens, making them excellent
performers in both Chinese and English tasks. Baichuan-13B is hosted on a
local A100 service for the experiments, but the pricing is calculated according
to vendor rates.

GPT-3.5 and GPT-4 [26] from OpenAI. GPT-3.5 is already well-regarded
for handling a wide range of natural language tasks, but GPT-4 takes it a step
further with even better accuracy and understanding.

DeepSeek-Coder [14] from DeepSeek. This model is specifically tailored for
coding, trained on 2 trillion tokens with 87% of them being code and 13% natural
language, making it highly specialized for programming-related tasks.

Claude-3-Haiku [1] from Anthropic is designed for enterprise applications.
It’s fast, affordable, and performs well on industry benchmarks. It can process
up to 21K tokens per second for prompts under 32K tokens, which is impressive.

Qwen1.5-72B-Chat-GPTQ-Int4 [2] from Alibaba. This model offers substan-
tial performance improvements and supports multiple languages. It can handle
up to 32K context length, which is quite versatile for different applications. Al-
though this model is hosted on a local A100 service for the experiments, its
pricing is calculated based on vendor rates.

The following table summarizes the costs and hosting details for these models:
Each of these models brings its own strengths and cost factors, making

them suitable for different use cases. GPT-4, though high-performing, come
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Model Price (RMB per million tokens) Hosted by

GPT-4 217.5 Azure
GPT-3.5 10.88 Azure
DeepSeek-Coder 1 DeepSeek
Claude-3-Haiku 1.81 Anthropic
Qwen1.5-72B-Chat 3.5 Local (A100)
Baichuan2-turbo 8 Baichuan-AI
Baichuan-13B 6 Local (A100)

Table 1: Model Pricing and Hosting Information. The price data was retrieved
on 2024/07/04 from the respective vendors’ websites.

with higher costs. On the other hand, models like DeepSeek-Coder, Claude-3-
Haiku, Qwen1.5-72B-Chat-GPTQ-Int4, and Baichuan-13B provide more budget-
friendly options with specialized capabilities, particularly in coding and function
contexts.

3.3 Evaluation Metrics

Our evaluation focuses on four key aspects:

Success Rate Measuring the correctness of the generated function calls and their
outputs. This includes verifying if the function calls produce the expected results
when interfacing with various APIs.

Strong Fallback Rate This metric measures the frequency at which the framework
resorts to using a stronger language model, such as GPT-4, to generate function
call code when the weaker models fail to produce consensus or accurate results.

Relative Cost-Efficiency It represents the inverse of the cost relative to GPT-4.
It indicates how many times more expensive GPT-4 is compared to the model
being evaluated. For GPT-4, this value is set to 1.0. A higher number means the
model is cheaper. The formula is:

Relative Cost-Efficiency =
Cost of GPT-4
Cost of Model

(2)

Relative Success Rate It represents the success rate of the model relative to GPT-
4’s success rate. For GPT-4, this value is set to 1.0. A higher number indicates
higher accuracy. The formula is:

Relative Success Rate =
Success Rate of Model
Success Rate of GPT-4

(3)
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Fig. 2: Relative Success Rate and Strong Fallback Rate for the Open Weather
test suite.

3.4 Open Weather

The OpenWeather test suite evaluates the agents’ capability to make API
calls for weather data retrieval. Throughout the Fig. 2,6-10, it was observed
that increasing the number of calls to the weaker agent (num) generally led to
improved success rates across nearly all models. This enhancement was most
notable in scenarios where a strong fallback strategy was employed. Specifi-
cally, in conditions D and E, the fallback to a stronger agent like GPT-4 signifi-
cantly boosted success rates. For example, Baichuan-13b’s success rate increased
markedly from 0.203 in a single-call setup (Condition A) to 0.66 with multiple
calls and a strong fallback (Condition E).

The implementation of a strong fallback mechanism was particularly effective,
enhancing performance notably for models that initially showed lower success
rates, such as Qwen-1.5-Int4, which saw an increase from 0.83 to 0.91 when mov-
ing from weak to strong fallback scenarios. However, while the strong fallback
strategy enhanced performance, it also led to increased costs due to the higher
number of calls involved, including those to the more expensive agents. Despite
this, models like Claude-3-Haiku and DeepSeek-Coder demonstrated exceptional
cost-efficiency, achieving high success rates comparable to GPT-4 but at signif-
icantly lower operational costs. These models managed to deliver near-optimal
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performance without frequent reliance on stronger agent fallbacks, highlighting
their utility in cost-sensitive environments.

For detailed experimental data and additional results, please refer to the
Tables 2-6 in Appendix B.

3.5 The Cat API

The Cat API test suite assesses the models’ capability to interact with a
REST API for cat-related operations, including handling various HTTP methods
and parsing JSON responses effectively. The results are shown in Fig. 3,11-15,
and details can be found in Tables 7-11 in Appendix C.

Impact of Increasing Calls As the number of calls to the weaker agents increases,
there is a general trend of improvement in success rates across almost all models.
This enhancement is apparent when comparing conditions with weak fallback (A,
B, C) and those with strong fallback (A, D, E).

Effectiveness of Strong LLM Fallback Implementing a strong fallback signifi-
cantly boosts success rates. This is particularly evident when transitioning from
a weak fallback to a strong fallback setup, as seen in the comparative analysis
of conditions B and D, as well as C and E.

Cost-Efficiency Models like Claude-3-Haiku and DeepSeek showcase exceptional
cost-efficiency, achieving high success rates with minimal additional cost, making
them ideal for budget-sensitive applications.

The Cat API test results underline the beneficial impact of increasing the
number of interactions (num) and the strategic use of strong fallback mechanisms.
Particularly, models like Qwen-1.5-Int4 and Baichuan2-turbo show remarkable
improvements, highlighting the framework’s capability to adaptively leverage
stronger agents when necessary. Moreover, the high performance combined with
cost-efficiency of models like Claude-3-Haiku and DeepSeek in handling API
interactions demonstrates the practicality of the cooperative framework in effi-
ciently managing API calls while maintaining high success rates. These results
confirm the robustness of this approach in optimizing LLMs for real-world ap-
plication scenarios.

3.6 HomeSearch Test Suite

The HomeSearch test suite critically evaluates the capability of various lan-
guage models to interact with a fictional API for property searching. This suite
poses complex, domain-specific challenges that involve understanding and gen-
erating appropriate queries for property search parameters. As this test suite is
fictional, it is less likely to be included in the LLMs’ pretraining data.

The performance and cost-efficiency of the models are analyzed under various
experimental conditions, as shown in Fig. 4, 16–20. The details are provided in
Tables 12–16 in Appendix D.
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Fig. 3: Relative Success Rate and Strong Fallback Rate for the CAT API test
suite.

High Performance and Cost Efficiency Claude-3-Haiku demonstrated outstand-
ing performance across all conditions, consistently achieving high success rates.
Notably, it reached a success rate of 0.98 in Condition D, showcasing its ro-
bustness and cost-efficiency as one of the top performers. Qwen-1.5-Int4 also
exhibited strong performance, particularly excelling in Condition E with a suc-
cess rate of 0.98. This model maintained excellent cost-efficiency throughout the
tests, marking it as a highly effective option.

GPT-4 showed reliable high success rates ranging from 0.93 to 0.96 across dif-
ferent test conditions. However, it was less cost-efficient compared to the more
economical models like Claude-3-Haiku and Qwen-1.5-Int4, due to its higher
operational costs. GPT-3.5-Turbo and Baichuan2-Turbo provided balanced per-
formance with success rates between 0.89 and 0.91. These models proved par-
ticularly cost-effective, especially beneficial in scenarios requiring increased calls
and flexible fallback strategies.

DeepSeek consistently displayed high success rates from 0.86 to 0.91, paired
with excellent cost-efficiency, making it a viable choice for budget-constrained
environments. The performance of DeepSeek notably improved in scenarios with
increased calls and strategic fallback applications, as seen in Conditions B and
D.

Baichuan-13b lagged behind in performance across all test conditions, with
success rates only ranging from 0.05 to 0.20. Despite some improvements when
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fallback strategies were employed, it remained the least competitive model in
the suite.

Impact of Increased Calls and Strong Fallback Strategy The increase in the num-
ber of LLM calls generally led to improved success rates across most models, with
significant enhancements for initially lower-performing models like Baichuan-13b
and Qwen-1.5-Int4. Implementing a strong LLM fallback, as seen in Conditions
D and E, significantly boosted the success rates for nearly all models. For in-
stance, Claude-3-Haiku and Qwen-1.5-Int4 reached peak success rates of 0.98
and 0.97, respectively. However, this approach did increase the total number of
calls, which could impact cost-efficiency for models requiring frequent fallback
interventions.

Models like Claude-3-Haiku and Qwen-1.5-Int4 stood out as top performers,
offering an optimal balance of high success rates and cost efficiency. Conversely,
while GPT-4 maintained stable and reliable outputs, its higher cost could pose
limitations in budget-sensitive scenarios. On the other hand, models like GPT-
3.5-Turbo, Baichuan2-Turbo, and DeepSeek offered a good blend of performance
and cost-effectiveness, suitable for varied application needs.

Fig. 4: Relative Success Rate and Strong Fallback Rate for the Home Search test
suite.
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3.7 Booking

The Booking test suite evaluates the models’ ability to handle complex de-
pendencies in trip and hotel booking scenarios. This suite is more challenging
than the previous ones, which is reflected in the generally lower success rates
across all conditions. The test involves multi-step, interdependent API calls,
simulating real-world travel booking systems.

Additionally, an example of the prompts used in this test suite is provided
in Appendix A of the prompts used in this test suite, together with the result
Fig. 5,21-25. Detailed data can be found in Tables 17-21 in Appendix E.

Impact of Increasing Calls (num): The experiments confirm that increasing
the number of calls generally enhances performance, particularly when combined
with strong fallback mechanisms. This approach significantly improves accuracy,
especially for agents that initially perform poorly.

The strong fallback strategy significantly boosts accuracy. This combination
typically results in the most substantial performance gains, supporting both pro-
posed viewpoints robustly. Agents respond differently to these strategies. Some
agents, like Baichuan-13b, benefit immensely from increased calls and strong
fallback mechanisms. In contrast, others, such as Claude-3-Haiku, show less dra-
matic improvements. This variability underscores the need to tailor strategies
based on individual agent’ capabilities and task complexities.

These findings strongly support the findings that optimizing model perfor-
mance in complex tasks can benefit significantly from increased engagement and
strategic fallbacks.

4 Conclusion

A novel cooperative framework is introduced by this research, which sig-
nificantly enhances the function calling capabilities of language models. The
strengths of both weaker and stronger agents are leveraged in this approach.
Consensus-based methods are combined with strategic response selection, demon-
strating a promising path towards optimizing performance while computational
resources are effectively managed.

Key findings from extensive experiments across diverse test suites (Open
Weather, The Cat API, Home Search, and Booking) are revealed:

1. Efficacy of Increasing Calls to Weaker Agents. Increasing the number of calls
to weaker agents generally improved success rates across most models and
scenarios, highlighting the benefits of greater engagement with lower-cost
models.

2. Performance Boost with Strong Fallback Mechanisms. Implementing strong
fallback mechanisms provided significant performance improvements, par-
ticularly for initially lower-performing models, ensuring high accuracy and
reliability.

3. Cost-Efficiency of Certain Models. Models like Claude-3-Haiku and DeepSeek-
Coder achieved high success rates comparable to more expensive models at
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Fig. 5: Relative Success Rate and Strong Fallback Rate for the Booking test
suite.
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significantly lower operational costs, demonstrating their potential for cost-
effective deployment.

It is suggested by these findings that more efficient and cost-effective deploy-
ment strategies can be developed through understanding and leveraging the in-
herent capabilities of both weaker and stronger agents. The potential to increase
the accessibility and adoption of powerful AI agents across various domains and
applications is created by this approach, particularly in resource-constrained
environments.
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A Prompts Example of Booking

I have the following set of API:

# To set the departure date of the trip, given a Date object.
# This function must be called if booking type is ’trip tickets’.
# If booking type is ’both’ and this function is not called explicitly,
# ’departure_date’ will be set to ’hotel_checkin_date’ implicitly.
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API.set_departure_date(Date)

# To define a date.
date = Date(month, day, year)

# To set minimum ticket price.
API.set_min_ticket_price(value)

# < other apis ...
# The order of functions and tasks’ examples has been shuffled
# to introduce more diveristy. >

-------------

I have the following set of examples:

Task: I’m interested in booking 2 Queen Bed room in Garden Grove for 5 night(s),
from Dec 17 2022 to Dec 22 2022. Find me something within my budget of 800 USD.
Action:
API.select_booking_type("hotels")
API.set_num_rooms(2)
API.select_room_type("Queen Bed")
location = Loc("Garden Grove")
API.set_hotel_location(location)
checkin_date = Date(12, 17, 2022)
API.set_checkin_date(checkin_date)
checkout_date = Date(12, 22, 2022)
API.set_checkout_date(checkout_date)
API.set_max_room_price(800)
API.search()

Task: < other task examples ... order shuffled >

-------------

Task: Find round trip flight tickets from Ontario to Kansas City for 4 adults,
leaving on Dec 19 2022 and returning on Dec 25 2022.
Action: [\n]

B Model Performance for OpenWeather
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Model (Greedy Decoding) Success Rate Weak LLM Calls Strong LLM Calls

gpt-35-turbo 0.857 100 0
GPT-4 1 100 0
Qwen-1.5-Int4 0.817 100 0
Baichuan2-turbo 0.747 100 0
Baichuan-13b 0.203 100 0
Claude-3-haiku 0.943 100 0
DeepSeek 0.99 100 0

Table 2: OpenWeather: Condition A (num=1; vote=1; fallback=no)

Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-35-turbo 0.86 300 0
Qwen-1.5-Int4 0.83 300 0
Baichuan2-turbo 0.81 300 0
Baichuan-13b 0.2 300 0
Claude-3-haiku 0.98 300 0
DeepSeek 1 300 0
GPT-4 1 300 0

Table 3: OpenWeather: Condition B (num=3; vote=0.5; fallback=weak)

Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-35-turbo 0.88 500 0
Qwen-1.5-Int4 0.85 500 0
Baichuan2-turbo 0.85 500 0
Baichuan-13b 0.17 500 0
Claude-3-haiku 0.98 500 0
DeepSeek-Coder 0.99 500 0
GPT-4 1 500 0

Table 4: OpenWeather: Condition C (num=5; vote=0.5; fallback=weak)

Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-35-turbo 0.89 300 3
Qwen-1.5-GPTQ 0.9 360 14
Baichuan2-turbo 0.83 300 4
Baichuan-13b 0.55 300 46
Claude-3-haiku 0.97 300 1
DeepSeek-Coder 0.99 300 0
GPT-4 (Greedy Decoding) 1 100 0

Table 5: OpenWeather: Condition D (num=3; vote=0.5; fallback=strong)
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Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-35-turbo 0.9 500 1
Qwen-1.5-Int4 0.91 500 11
Baichuan2-turbo 0.84 500 6
Baichuan-13b 0.66 500 55
Claude-3-haiku 0.97 500 0
DeepSeek-Coder 0.98 500 0
GPT-4 (Greedy Decoding) 1 100 0

Table 6: OpenWeather: Condition E (num=5; vote=0.5; fallback=strong)

Fig. 6: OpenWeather A. The top-right corner indicates better performance for
relative cost and relative success rate. The size of the bubble represents absolute
accuracy. GPT-4 is shown as the blue bubble in the bottom-right corner as
baseline.
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Fig. 7: OpenWeather B

Fig. 8: OpenWeather C



24 Wei Jiang et al.

Fig. 9: OpenWeather D

Fig. 10: OpenWeather E



Cooperative Agentic Framework for Enhanced Function Calling 25

C Model Performance for The Cat API

Model (Greedy Decoding) Success Rate Weak LLM Calls Strong LLM Calls

Baichuan-13b 0.68 100 0
Baichuan2-turbo 0.860 100 0
GPT-35-turbo 0.95 100 0
GPT-4 0.95 100 0
Claude-3-haiku 0.909 100 0
Qwen-1.5-Int4 0.821 100 0
DeepSeek-Coder 0.96 100 0

Table 7: The Cat API: Condition A (num=1; vote=1; fallback=no)

Model Success Rate Weak LLM Calls Strong LLM Calls

Baichuan-13b 0.7 300 0
Baichuan2-turbo 0.9 300 0
GPT-35-turbo 0.95 300 0
GPT-4 0.95 300 0
Claude-3-haiku 0.94 300 0
Qwen-1.5-Int4 0.96 300 0
DeepSeek-Coder 0.99 300 0

Table 8: The Cat API: Condition B (num=3; vote=0.5; fallback=weak)
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Model Success Rate Weak LLM Calls Strong LLM Calls

Baichuan-13b 0.74 500 0
Baichuan2-turbo 0.91 500 0
GPT-35-turbo 0.96 500 0
GPT-4 0.95 500 0
Claude-3-haiku 0.95 500 0
Qwen-1.5-Int4 0.96 500 0
DeepSeek-Coder 0.97 500 0

Table 9: The Cat API: Condition C (num=5; vote=0.5; fallback=weak)

Model Success Rate Weak LLM Calls Strong LLM Calls

baichuan-13 0.77 300 7
Baichuan-turbo 0.93 300 0
GPT35 0.96 300 2
Haiku 0.95 300 4
Qwen 0.95 300 5
DeepSeek-Coder 0.97 300 0
GPT-4 (Greedy Decoding) 0.95 100 0

Table 10: The Cat API: Condition D (num=3; vote=0.5; fallback=strong)

Model Success Rate Weak LLM Calls Strong LLM Calls

Baichuan-13b 0.74 500 6
Baichuan2-turbo 0.94 500 1
GPT-35-turbo 0.97 500 3
Claude-3-haiku 0.95 500 2
Qwen-1.5-Int4 0.97 500 8
DeepSeek-Coder 0.98 500 0
GPT-4 (Greedy Decoding) 0.95 100 0

Table 11: The Cat API: Condition E (num=5; vote=0.5; fallback=strong)
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Fig. 11: The top-right corner indicates better performance with lower cost. For
example, the dark bubble represents DeepSeek-Coder, which demonstrates more
(1.0105) the accuracy of GPT-4 at only 1/219.79 of the cost compared to GPT-4.

Fig. 12: The Cat API B
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Fig. 13: The Cat API C

Fig. 14: The Cat API D
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Fig. 15: The Cat API E

D Model Performance for HomeSearch

Model (Greedy Decoding) Success Rate Weak LLM Calls Strong LLM Calls

GPT-4 0.95 100 0
gpt-35-turbo 0.89 100 0
Baichuan2-turbo 0.90 100 0
Qwen-1.5-Int4 0.93 100 0
Claude-3-haiku 0.95 100 0
Baichuan-13b 0.05 100 0
DeepSeek-Coder 0.86 100 0

Table 12: HomeSearch: Condition A (num=1; vote=1; fallback=no)
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Model Success Rate Weak LLM Calls Strong LLM Calls

GPT-4 0.96 300 0
gpt-35-turbo 0.90 300 0
Baichuan2-turbo 0.91 300 0
Qwen-1.5-Int4 0.96 300 0
Claude-3-haiku 0.97 300 0
Baichuan-13b 0.09 300 0
DeepSeek-Coder 0.90 300 0

Table 13: HomeSearch: Condition B (num=3; vote=0.5; fallback=weak)

Model Success Rate Weak LLM Calls Strong LLM Calls

GPT-4 0.93 500 0
gpt-35-turbo 0.90 500 0
Baichuan2-turbo 0.90 500 0
Qwen-1.5-Int4 0.97 500 0
Claude-3-haiku 0.94 500 0
Baichuan-13b 0.12 500 0
DeepSeek-Coder 0.91 500 0

Table 14: HomeSearch: Condition C (num=5; vote=0.5; fallback=weak)

Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-35-turbo 0.89 300 0
Baichuan2-turbo 0.89 300 0
Qwen-1.5-Int4 0.97 300 0
Claude-3-haiku 0.98 300 0
Baichuan-13b 0.20 300 10
DeepSeek-Coder 0.91 300 0
GPT-4 (Greedy Decoding) 0.95 100 0

Table 15: HomeSearch: Condition D (num=3; vote=0.5; fallback=strong)

Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-35-turbo 0.89 500 0
Baichuan2-turbo 0.90 500 0
Qwen-1.5-Int4 0.98 500 0
Claude-3-haiku 0.96 500 0
Baichuan-13b 0.20 500 5
DeepSeek-Coder 0.89 500 0
GPT-4 (Greedy Decoding) 0.95 100 0

Table 16: HomeSearch: Condition E (num=5; vote=0.5; fallback=strong)
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Fig. 16: HomeSearch A

Fig. 17: HomeSearch B
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Fig. 18: HomeSearch C

Fig. 19: HomeSearch D
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Fig. 20: HomeSearch E

E Model Performance for Booking

Model (Greedy Decoding) Success Rate Weak LLM Calls Strong LLM Calls

GPT-4 0.883 120 0
gpt-3.5-turbo 0.833 120 0
baichuan-13 0.025 120 0
Baichuan2-turbo 0.633 120 0
Qwen-1.5-Int4 0.75 120 0
Claude-3-haiku 0.792 120 0
DeepSeek-Coder 0.175 120 0

Table 17: Booking: Condition A (num=1; vote=1; fallback=no)
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Model Success Rate Weak LLM Calls Strong LLM Calls

GPT-4 0.900 360 0
gpt-3.5-turbo 0.833 360 0
baichuan-13 0.042 360 0
Baichuan2-turbo 0.692 360 0
Qwen-1.5-Int4 0.742 360 0
Claude-3-haiku 0.767 360 0
DeepSeek 0.167 360 0

Table 18: Booking: Condition B (num=3; vote=0.5; fallback=weak)

Model Success Rate Weak LLM Calls Strong LLM Calls

GPT-4 0.892 600 0
gpt-3.5-turbo 0.858 600 0
baichuan-13 0.058 600 0
Baichuan2-turbo 0.708 600 0
Qwen-1.5-Int4 0.775 600 0
Claude-3-haiku 0.800 600 0
DeepSeek 0.167 600 0

Table 19: Booking: Condition C (num=5; vote=0.5; fallback=weak)

Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-3.5-turbo 0.925 360 13
baichuan-13 0.792 360 106
Baichuan2-turbo 0.808 360 18
Qwen-1.5-Int4 0.817 360 19
Claude-3-haiku 0.850 360 13
DeepSeek 0.392 360 32
GPT-4 (Greedy Decoding) 0.883 120 0

Table 20: Booking: Condition D (num=3; vote=0.5; fallback=strong)

Model Success Rate Weak LLM Calls Strong LLM Calls

gpt-3.5-turbo 0.908 600 20
baichuan-13 0.850 600 114
Baichuan2-turbo 0.842 600 29
Qwen-1.5-Int4 0.850 600 25
Claude-3-haiku 0.883 600 18
DeepSeek 0.375 600 32
GPT-4 (Greedy Decoding) 0.883 120 0

Table 21: Booking: Condition E (num=5; vote=0.5; fallback=strong)
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Fig. 21: Booking A

Fig. 22: Booking B
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Fig. 23: Booking C

Fig. 24: Booking D. Compared to other cases, this test shows higher costs, but
it requires less than 1/3 of the cost of GPT-4.
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Fig. 25: Booking E


