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Abstract. The purpose of this study is to develop a fall detection sys-
tem for monitoring elderly individuals living alone, and to use simulation
to create training data for the system. We developed a system using a
depth camera to calculate the body’s acceleration. By performing ac-
tual falling motions, we confirmed that sudden accelerations occur dur-
ing falls. We implemented a triple inverted pendulum, commonly used
for detailed analyzing human motion, in a dynamics simulator and con-
ducted simulations of falling and non-falling movements. As a result,
we confirmed that the obtained time-series data we generated closely
resembled the actual measured motions. Using the time-series data ob-
tained from the triple inverted pendulum simulation as training data,
we applied machine learning to classify falling and non-falling motions
measured with Azure Kinect. As a result, we confirmed that each type
of motion could be accurately classified as either a fall or a non-fall using
machine learning.
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1 INTRODUCTION

Currently in Japan, there is an increasing trend of elderly people living alone,
driven by the aging population [1]. Furthermore, accidents due to declining phys-
ical and cognitive functions in elderly individuals are frequently reported. Ap-
proximately 56% of these accidents are due to indoor falls in residential settings
[2]. If an elderly person living alone falls indoors, and loses consciousness or is
immobilized due to injury, he or she may not be able to call outside for help,
which could lead to serious injury or death. Therefore, monitoring systems which
can check the safety of the eldery from the outside are attracting attention [3].
Among these, fall detection in monitoring systems involves measuring the state
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during falls using various types of sensors. The data collected are then used for
classification and decision-making through machine learning techniques. Luca et
al. collected large-scale real-world fall motion data and proposed a fall detection
system using accelerometers [4]. In this proposed method, acceleration during
143 fall samples was measured, and motion classification using machine learning
techniques such as SVM resulted in a sensitivity of 80%. Imamura et al. pro-
posed a fall motion classification system using Doppler sensors[5]. This method
uses time-frequency spectrograms obtained from actual sensor measurements as
the dataset. The motion classification method uses Long Short-Term Memory
(LSTM) and achieved a detection accuracy of 93% for sudden fall movements.
However, a significant issue with these methods is the substantial cost required
to replicate each movement.

The purpose of our study is to develop a fall detection system for monitoring
elderly individuals living alone, and to use simulation to create training data
for the system. In this study, we perform simulations of falling and non-falling
motions using the inverted pendulum model, which is commonly used for human
motion analysis [6, 7]. For non-falling motions, stationary standing and walking
motions were selected. Using the obtained time-series data, we apply machine
learning to develop a fall detection system capable of classifying falling and
non-falling motions.

2 OVERVIEW OF THE FALL DETECTION SYSTEM

The fall detection system proposed in this study is shown in Figure 1. This fall
detection system is designed to be installed in a living space, continuously mon-
itoring elderly individuals living alone, and capable of alerting external contacts
in case of abnormal incidents such as falls. Considering 24/7 operation within a
living space without the inconvenience of wearing, we selected an installed type
of depth camera.

2.1 The depth camera for fall detection system

We use the Azure Kinect depth camera from Microsoft Corporation. Figure 2
shows the product’s appearance and camera coordinate system. This product
utilizes the Azure Kinect Body Tracking SDK provided by the same company,
enabling body tracking at 30 fps. It outputs 3D skeleton coordinates of 32 body
joints in millimeters, as shown in Figure 3.

2.2 Overview of fall detection method

In this study, we calculate body acceleration from skeletal coordinates obtained
from Azure Kinect and the time intervals at which these coordinates were ac-
quired. We apply machine learning using simulated acceleration data as training
data to classify fall motions based on the calculated acceleration. The reason for
using acceleration as a method to distinguish fall actions is to differentiate them
from movements such as squatting, which resemble falls.
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Fig. 1: Overview of fall detection system

3 CALCULATING BODY ACCELERATION USING A
DEPTH CAMERA

The procedure for calculating acceleration from skeleton coordinate values ob-
tained from Azure Kinect is described as follows.

3.1

Correction of the tilt angle at installation using rotation
matrices

Azure Kinect is originally designed to be used in a horizontally mounted po-
sition. Therefore, when Azure Kinect is tilted, it cannot correctly output the

Fig.2: Azure Kinect DK
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Fig. 3: Measurable joint coordinate system

skeleton coordinates. To address this, we perform a coordinate transformation
around the X-axis. Figure 4 shows the overview of coordinate transformation.
The coordinate transformation formula is shown in Equation 1. Y and Z rep-
resent the original coordinate axes of the Azure Kinect. 6 is the camera’s tilt
angle. Y’ and Z’ are the coordinate axes after the transformation.

X' 1 0 0 X
Y'| = |0 cos@ sinf| |V (1)
A 0 —sinf cosb| | Z

3.2 Calculation of Body Acceleration

Figure 5 shows the flowchart for calculating acceleration from skeleton coordi-
nates. The acceleration is derived by following this flowchart. First, upon de-
tecting a person, obtain their skeleton coordinates and the time ¢ at which these
coordinates were captured. Next, use the transformation formula to perform a
coordinate transformation, converting the value of the Y-axis to the height from
the floor. Subsequently, perform a time differentiation using the obtained co-
ordinate displacements and the time intervals at which these coordinates were
captured. Then, apply a weighted moving average filter to smooth the results.
Finally, calculate the acceleration by performing a time differentiation on the
smoothed velocity using the time intervals at which the coordinates were cap-
tured. Similarly, apply a weighted moving average filter to smooth the calculated
acceleration. Using the smoothed acceleration data for the three axes, calculate
the resultant acceleration and verify the acceleration characteristics.

The weighted moving average filter is shown in Equation 2. FlilteredA repre-
sents the filtered value, k is the weighting constant, ¢ is the frame number, and
A denotes the velocity or acceleration being filtered.
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Skeletal coordinates to be measured

Fig. 4: Tilt angle compensation diagram for installation

FilteredA,, FilteredA;, 1 A,
FilteredA,, | = (1 —k) | FilteredAy,_1| +k [A,|, k=02 (2)
FilteredA,, FilteredA,, 1 A,

4 DERIVATION OF BODY ACCELERATION

In this section, we conducted measurements of body acceleration during actual
movements such as falling motions. The skeletal coordinates to be measured are
the head and pelvis, as shown in Figure 3.

4.1 Measurement procedure

Figure 6 illustrates the measurement environment for the falling motion exper-
iment. An Azure Kinect was mounted on a stand at a height of 2.1 m, angled
downwards at 30°, with a mat placed in front of the stand to ensure safety. The
measurements were conducted with the falling motion performed on the mat.
The procedure began by positioning the subject at a stationary point approx-
imately 4.0 m away from the Azure Kinect. After a few seconds, the subject
started walking towards the mat, stumbled on the mat, and executed the falling
motion. The measurements continued for a few more seconds after the fall to
capture the post-fall posture before concluding the session.



Eisuke Tomita et al.

| Skeletal coordinates acquisition |
i
| Acquisition of time |
¥
| Coordinate transformation |

¥

Calculation of
instantaneous speed

]
| Weighted Moving Average FiIters|
v

| Calculation of acceleration |

v
| Weighted Moving Average Filters|

|Ca|cu|at|'on of 3-axis composite acceleration |

Fig. 5: Flowchart of acceleration derivation

Fall Down

() Walk ®
<=

> \

4.0 m

Fig. 6: Schematic of the fall experiment



Title Suppressed Due to Excessive Length 7

| Stand@l Walkigj |_lia||ir|g | | Stand@l Walkin\g\J L;alling |
5 7

9 — —
i T
< =
— 8 E £
£ ;S E ¢ c
z = = 2
] =
@ o 5 1]
g 3 L g s ]
@ (] 2
S ] o @
@ s O = o
a " £ @
a 2 - g 2 @
2 = & =
@ 3 © 3 z
& a o
! p—— 1 E ] E-
= ] c
° 5] = 2 5]
<1 2 @ e o
3 o = <} ]
o @ Qo g %
1M © 1 Y
o
1 0
0 2 4 6 8 10 B 0
Time [s] o : ‘ o 8 1
Time [s]
® X-coordinates e Y-coordinates i .
& X-coordinates ® Y-coordinates
® Z-coordinates ——3-axis composite acceleration ‘ ‘ ) ‘
® Z-coordinates w—3-axis composite acceleration
(a) Head (b) Pelvis

Fig. 7: Results of the falling experiment

4.2 Measurement results

Figure 7 shows position the changes in the X-axis, Y-axis, and Z-axis coordi-
nates, as well as the acceleration characteristics, for the head and pelvis. The red
line represents the displacement along the X-axis, the green line represents the
displacement along the Y-axis, the blue line represents the displacement along
the Z-axis, and the orange line represents the resultant acceleration from the
three axes. The interval from 0.0 s to 4.5 s is the stationary period, from 4.5 s to
7.0 s is the walking motion period, and from 7.0 s to 7.5 s is the falling period.

It can be observed that during the stationary intervals, the resultant accel-
eration from the three axes remains approximately constant at 0 m/s?. During
the walking motion intervals, it can be observed that both the head and pelvis
exhibit periodic increases and decreases in the resultant acceleration between 0.2
m/s? and 1.5 m/s?. Furthermore, during the falling motion intervals, sudden ac-
celerations occur at the moment of falling. The maximum acceleration observed
was 8.6 m/s? at the head and 6.3 m/s? at the pelvis. From the above, it can be
confirmed that sudden accelerations occur during falling movements, indicating
that falling actions can be distinguished.

5 SIMULATION OF FALL AND NON-FALL
MOVEMENTS USING A TRIPLE INVERTED
PENDULUM

In this section, we utilized the dynamics simulator Choreonoid to create a triple
inverted pendulum model and conducted simulations of falling and non-falling
motions.
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5.1 Development of a triple inverted pendulum

Figure 8 depicts the created inverted pendulum model. This model consists of
three links and three joints. From the bottom up, the first joint simulates the
ankle, the second joint simulates the knee, and the third joint simulates the
hip. Additionally, from the bottom up, the first link represents the lower leg,
the second link represents the thigh, and the third link represents the upper
body. The main specifications of the triple inverted pendulum model created are
shown in the table 1. The created inverted pendulum model has a total length
of 1.5 meters and weighs 60 kilograms. It is configured with a base where three
inverted pendulums are attached to rotation axis. Additionally, two models were
created for fixing the ankle joint: one fixed by a rotational axis and another that
operates on a cart. The model fixed by the rotational axis is used for the falling
simulation, while the model fixed by the cart is used for the stationary standing
and walking motion simulations. The weight of each rod was determined based
on the weight ratio of the human body, ensuring that the center of gravity is
located at the pelvis. Additionally, the moment of inertia for each segment was
set to I = 0.2 kgm?.

Lumbar joint

Thigh

Fig. 8: Triple inverted pendulum

Table 1: Triple inverted pendulum specifications

Weight |kg] 60
Height [m] 1.5
Moment of Inertia [kgm?]|0.2
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5.2 Control Methods for the Triple Inverted Pendulum

In this section, a control method for reproducing each motion using a triple in-
verted pendulum is discussed. When simulating falling motions, it is necessary
to ensure that each model does not interfere with each other and that the move-
ment does not exceed the human joint range of motion. Therefore, we employed
PD control, a mathematical model used for human posture control, to regulate
the movements|8]. We calculated the joint input torque 7; as shown in Equation
3 using the desired values 6 , 6 for each joint angle and angular velocity, denoted
as 0; , 6, for the current joint angles and angular velocities. The gain constants
K, and K4 were qualitatively determined during simulation execution to ensure
that the triple inverted pendulum does not exhibit erratic behavior.

In addition, control of the stationary and walking motions was performed
using the choreography function of Choreonoid. The choreography function is
a feature that allows specifying the joint angles and positions of the model on
keyframes, automatically adjusting balance.

7= K0 — 0) + Ka(0—0;) i=1,2,3 3)

5.3 Acceleration Calculation Method for the Triple Inverted
Pendulum

The following describes the method for calculating the resultant acceleration
from the three axes using the coordinate values obtained from the simulation
of the triple inverted pendulum. The coordinates to be obtained by the triple
inverted pendulum are the head and lumbar joint from Figure 8, because the
coordinates close to the head and pelvis measured by Azure Kinect were to be
obtained. First, the velocity was calculated by performing a first-order differen-
tiation on the coordinate displacements of the triple inverted pendulum. Next,
using the appropriate Equation 2, the smoothed acceleration was calculated.
Then, the smoothed velocity was differentiated to obtain the acceleration. Fi-
nally, the acceleration was also smoothed using the appropriate Equation 2, and
the resultant acceleration was calculated from the three-axis accelerations.

5.4 Simulation of falling and non-falling scenarios using the
3-degree-of-freedom model

In this section, the results of simulating each motion are presented. The sim-
ulation timestep was set to 33.3 ms to match the sampling rate of the Azure
Kinect.

Simulation of falling movements The falling motion simulation was con-
ducted under the following conditions. The initial posture was set with angles at
each joint, assuming a forward-leaning posture. No external force was applied,
and the falling over was caused only by the acceleration of gravity. During the
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Fig.9: Falling motion simulation
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Fig. 10: Results of the falling simulation

simulation execution and termination, care was taken to ensure that each link
did not interfere with others within the range of human joint mobility.

The triple inverted pendulum model during the simulation run is shown
in Figure 9 and the obtained coordinate values and calculated 3-axis composite
accelerations are shown in Figure 10. From Figures 9 and 10, it was observed that
the acceleration increases in response to posture changes in the triple inverted
pendulum model. The maximum acceleration reached was 7.4 m/s? at the head
coordinates and 5.0 m/s? at the pelvis coordinates. From the above, it can be
concluded that the triple inverted pendulum successfully generated motions that
closely resemble actual falling movements.

Simulation of standing movements The standing motion simulation was
conducted under the following conditions. Since a human maintains a standing
posture by moving back and forth 8 mm at a rate of 4-6 times per second [9],
the joint angles were adjusted so that the inverted pendulum moved back and
forth 8 mm.

The triple inverted pendulum model during the simulation run is shown in
Figure 11 and the obtained coordinate values and calculated 3-axis composite
accelerations are shown in Figure 12. From Figure 11, it can be confirmed that
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Fig. 12: Results of the standing simulation

the triple inverted pendulum is able to maintain its posture. Additionally, from
Figure 12, it can be seen that the acceleration characteristics vary from 0.0 m/s?
to 0.2 m/s%.

Simulation of walking movements The Walking motion simulation was con-
ducted under the following conditions. During the human walking cycle, the
stance phase, where the foot is on the ground, accounts for 60%, and the swing
phase, where the foot is moved forward, accounts for 40% [9]. Therefore, the
simulation was conducted to repeat the posture of the swing and stance phases
every second. However, since the swing phase was fixed on the cart and the foot
did not lift off the floor, only the forward swing posture was reproduced.

The triple inverted pendulum model during the simulation run is shown in
Figure 13 and the obtained coordinate values and calculated 3-axis composite
accelerations are shown in Figure 14. From Figure 13, it can be confirmed that
each posture is being repeated and moved. Additionally, from Figure 14, it can
be confirmed that a periodic acceleration characteristic similar to that of actual
walking motions was obtained.



12 Eisuke Tomita et al.

- r 58 |
t=20 t=24 t=3.0 t=34

Fig. 13: Walking motion simulation
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Fig. 14: Results of the walking simulation

6 Evaluation through Machine Learning

In this section, machine learning was performed using the time series data created
in Chapter 5 as training data, and the classification of each motion measured by
Azure Kinect was carried out.

6.1 Creating Training Data

The training dataset used the time series data from the triple inverted pendulum
model created in section 5. Each data set was processed to split the data ac-
cording to the 2 s duration of the falling motion simulation. Additionally, noise
was added to the created data and data inversion processing was performed,
resulting in 180 samples for falling and walking motions, and 198 samples for
stationary standing.

6.2 Creating Test Data

The test data consisted of time series data measured using the Azure Kinect. An
example of the time series data segmentation during a fall is shown in the Figure
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Table 2: Hyperparameters for LSTM

Input layer dimension 2

Output layer dimension 3

Number of hidden layers 1
Dimensionality of hidden layers|100

Loss function Cross-Entropy
Optimization function Adam
Activation function softmax

15. For falling motions, experiments were conducted five times in section 4, and
data were processed to include a total of 2 s (1 s before and after) around the
peak acceleration observed during the fall. For walking and stationary motions,
each motion was performed for around 15 seconds. Data 1 second before and
after the measurement was removed, and the data was processed to ensure a
length of 2 seconds.

6.3 Implementation of the LSTM Model

In this study, we use LSTM(Long Short Term Memory), which is commonly
employed for classification problems involving acceleration data [10,11]. Table 2
summarizes the hyperparameters of the LSTM model. Since the input layer uses
the three-axis combined acceleration of the head and torso, the dimensionality
of the input layer is 2 The dimensionality of the output layer is 3, as it performs
classification into three classes: falling motion, walking motion, and stationary
standing.

6.4 Classification results of each motion using LSTM

Based on the parameters shown in the table 2, training was performed, and test
data was loaded to classify each motion. Table 3 shows the average accuracy
of five trials using the model trained with the three-axis combined acceleration
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Table 3: Classification results of each motion
Predicted value
Fall |Standing|Walking
Fall 0.988 0.000 0.012
True value|Standing|0.006 0.989| 0.005
Walking |0.016 0.462 0.522

time series data measured by Azure Kinect. From Table 3, it can be confirmed
that the classification accuracy for falling motion and stationary standing was
approximately 99%, indicating that they were mostly correctly classified. How-
ever, the classification accuracy for walking motion was only 52%, with 46%
being incorrectly classified as stationary standing.

7 CONCLUSION

In this study, to implement a fall detection system for monitoring elderly in-
dividuals living alone, we converted skeletal coordinates into acceleration and
measured the acceleration characteristics during falls. From the acceleration in-
formation of the head and waist obtained during falling motions, it was confirmed
that sudden acceleration occurs during a fall. Additionally, a triple inverted pen-
dulum model simulating the human body was created in the simulator, and
simulations of both falling and non-falling motions were conducted. As a re-
sult, time-series data closely resembling actual falling and non-falling motions
were obtained. Finally, machine learning was performed using the time series
data obtained from the simulations, which allowed for the classification of each
motion.

As a future plan, we aim to generate motions similar to falling motions and
make them distinguishable.
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