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Abstract. This paper presents a spatial repetitive control integrated
with an incremental model-predictive control that achieves precise track-
ing of a spatial periodic reference signal for rotational systems with dis-
turbances. We first present a modeling method in the spatial domain.
This is followed by a configuration of the IMPSRC system. We designed
an inner-loop feedback-linearization controller that linearizes the sys-
tem model. Since the controller must contain the internal model of a
periodic reference signal to achieve tracking without steady-state error,
we designed an incremental model-predictive repetitive controller that
contains the internal model through incremental control input. An op-
timization problem considers an increment of the control input between
each period and ensures precise tracking of spatial periodic signals. We
developed a spatial sampling method triggered by pulses of an encoder to
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implement the IMPSRC control method. The IMPSRC method was ver-
ified by simulation of tracking control of a rotational system. Simulation
results show the effectiveness of the IMPSRC method.

Keywords: Spatial repetitive control - Internal principle - Incremental
model-predictive control.

1 Introduction

The basic control requirement of rotational systems is to track or reject periodic
signals. Repetitive control inserts the internal model of the periodic signals, for
example, 1/(1 —e~T#) with T being the period, and achieves perfectly asymp-
totic tracking [1]. However, a repetitive controller is very sensitive to the period
of the signal. A small change in the period will significantly impact the control
performance [2]. While most controllers are designed in the time domain, a va-
riety of actual signals have certain periods in the spatial domain rather than in
the time domain due to physical structure [3]. The period in the time domain
changes as the rotational velocity changes for such signals. Thus, it is hard to
ensure tracking or rejection performance with such spatial periodic signals in the
time domain.

Since such signals have constant periods in the spatial domain, for example,
27 rad in a rotational system, spatial repetitive control inserts the internal model
in the spatial domain to ensure the control performance for the spatial periodic
signals. This concept was first used to reject an angle-dependent disturbance in a
constant-speed rotational system and achieved the desired disturbance-rejection
performance [4]. Since conventional robustness analysis is in the time domain,
a spatial repetitive controller usually involves the synchronization between the
time and the spatial domain. It is difficult to implement a spatial repetitive con-
trol method in a time-domain control system. In order to ensure synchronization
and accommodate variable time periods, various methods have been proposed,
including delay estimation [5], frequency alignment [6], and frequency adapta-
tion [7]. This makes the design of a spatial method complicated and also declines
the tracking performance of a repetitive controller.

Model predictive control (MPC) is a practical control method in control
practices [8]. Once the internal model of a periodic signal is inserted into the
controller, an MPC-based system has good control performance for rotational
systems [9]. MPC methods make predictions of a number of future discrete steps.
However, the internal model of a periodic signal has infinite discrete steps. This
makes it challenging to insert the internal model of a periodic signal into an MPC
controller. An MPC controller is designed after a simplified repetitive controller
that improves current control performance for a permanent-magnet synchronous
machine in [10]. An incremental state-space model of a control objective is built
in [11]. An MPC controller which contains a part of control input generated by a
repetitive controller is designed for high-precision tracking for a motor in linear
motion. They both face a trade-off between stability and tracking precision.
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This paper presents a spatial repetitive control method using an incremental
model-predictive control, namely the IMPSRC method, for a mechatronic system
with disturbances that ensures reference tracking performance for spatial peri-
odic signals. First, we present a modeling method for the spatial-domain system
model. Then, we design a discrete feedback-linearization controller that provides
a discrete linear model. A model predictive controller calculated a control input
of the system by solving an optimization problem where the internal model was
considered as an incremental control input. An encoder-pulse-triggered sampling
method was developed to perform a sampling task in the spatial domain. Finally,
Simulation results demonstrate the validity of the IMPSRC method.

In this paper, ) is a delay operator (= 271), R is the set of real numbers,
R is the set of positive real numbers, N is the set of natural numbers, C is the
set of complex numbers, R™ is the set of n-dimensional real vectors, and R""*"
is the set of m x n real matrices. RH, is the set of real rational functional in A
that have no poles within or on the unit circle, G(-) is a transfer function of a
signal or a system. For G(\) € RH, |G|z is its Euclidean norm.

2 DModeling in Spatial domain

Let w(t) € R be a rotational velocity and let

A position is defined to be

e@:Agmm @)

Definition 1 (Spatial domain). The spatial domain is a set of positions de-
fined by (2) on which mathematical functions or physical signals are defined.

A time-domain signal, £(t), is repsented in the spatial domain as £(6):

£(0) = &(0(t) = &(®). 3)

Consider a time-domain state-space plant

dz(t)
5 = Au(t) + Bu(t) + Bad(?) (4)
y(t) = Cx(t)

where z(t) is the state, y(¢) is the output, u(t) is the control input, and d(¢) is
a disturbance.
Substituting (2) into (4) yields

dz(t)  da(t)do  dz((6))

& - odp @ dp O =205 )
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Fig. 1. Configuration of SEIDRC system.

The spatial-domain state-space model is

dz(6) A B _ d(0)
{ 1w~ 0o 0 F G U0+ Biagp
y(0) = Cz(0)

A spatial-domain sampling interval is
0k + 1] — 0[k] = A6
where k € N. The control input is yielded by a zero-order holder
ulk] = a(kA0), 0 € [0[k],0[k + 1]).

For a small enough Af,
2(0) =~ Q(0[k)).

A approximate description of the discrete model (6) is

+Badolk]

{ alk +1] = L(0[k])x (k] + @(0[k]) Bulk]
ylk] = Cxlk]

where

I'(0[k]) = exp (Q(?W)AQ)

1 A0 A
w(9[k]) = Q(g[k])/o P (n(a[k]f) @

1 0[k+1] A -
dalk] = 2(9[k)) /0[k] b (Q(e[k])A0> d)ds.

(10)
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3 Control system design

The IMPSRC system (Fig. 1) has three parts: a plant, an exact-feedback-linearization
controller, and a 2DOF repetitive controller.
The feedback-linearization controller is [12]

_ crem) i
ulk] z[k] + CUO)B

= CU[)B vIA] (14)

where v[k] is the visual control input of the linearized plant. Substituting (14)
into (10) yields
ylk +1] = v[k] + dc[F] (15)
where d.[k] = CBgdn[k] + Alk] and A[k] is a model uncertainty caused by
approximation (10).
Consider tracking a spatial periodic reference signal:

N-1
E 7“Z‘>\Z
i=0
= — . 1
where 5
™
L = — 1
A0 (17)
is the discrete period. The internal model of R(\) is
1
Kro(\) = ——. 1
RC( ) 1 — A\ ( 8)
Thus, a discrete repetitive controller requires in the calculation
V(N = AV () + F(R(V), Y () (19)

where F'(-,-) is a function. Rewrite (19), there is
v[n] = v[n — L] + f (rli], yl5]) (20)

where f (r[i],y[j]) is a function of reference and output signals.
Biuld a augmented model from (15) which is

glk + 1] = 8[k] + de[k] (21)
where
ylk +1] v[k] ) dek]
glk+1] = : ,o[k] = : ,de[k] = : (22)
y[k + L] v[k+ L —1] de[k + L]

Thus, a new augmented system model is
{;i:[k +1] = 2[k] + Ad[K]
glk] = (k]

where Ad[k] = o[k] — o[k — 1].
An optimal control problem at & with horizon NNV is

(23)
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Problem 1.
min J(r[k], y[k], v[k],) (24)
z[k + 1|k] = Z[k|k] + AD[k|k]

s.t. { ik|k] = & [k|k] (25)

where i € [0, N — 1]. The cost function is

N1
J = (e"[k+ilk]Qe[k +ilk] + ADT[k + i| k| RAD[k + i|k])

etk + N|k|Pé[k + N|k] (26)

where é[k] = #[k] — gy[k] and @ >0, R > 0, P > 0 are weighting matrices. Note
that
v[k] — v[k — L]

AD?[k] = : . (27)
vk+ L —1] — o[k —1]
The increment of virtual input of each adjacent spatial period, Avl[k], is calcu-

lated to satisfy the requirement of the repetitive control for achieving tracking
with a steady-state error of a periodic reference signal.

4 Feasibility and stability analysis
This section presents the stability feasibility and stability analysis of the IMP-
SRC method.
Remark 1. System (21) is a stabilizible linear system.
From [13], there exists a local stabilizing controller such that by implememt-
ing the controller,it holds that
ek + 1Pelk + 1] — T [k Pe[k] + T [k]Qelk] + AvT [k]|RAG[K] < 0. (28)
To derive the stability of the system, a Lyapunov function is

k—1

VK] =) (e"[Qeli) + A0 [JRAV[H]) + T [k Pe[k]. (29)

i=0
The increment of the Lyapunov function is

k—1

V(k+1)=V(k)=Y_ (eT[]Qeli] + AT [(JRAG[i]) + ¢ [k + 1] Pe[k + 1]
=0
—~ Z i + AT i) RAB[H]) + T [k] Pe[k]

—¢ [k:+ 1Pelk + 1] — & k] Pé[k]
+ e [k]Qe[k] + AT [k]RAD[K] < 0 (30)

Thus, the optimization problem is feasible and the system is stable.
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Fig. 2. Cutting process with reference trajectory (top view).
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Fig. 3. Rotational velocity of the spindle.

5 Simulation verification

Consider a cutting process (Fig. 2), a workpiece rotates around a spindle and
a cutting tool moves back and forth. The combination of the movements cuts
the workpiece to a certain shape. We did not consider the control of the spindle
and assumed that it was controlled by a tuned controller. The motor connected
with the cutting tool was controlled by the IMPSRC method. The simulation

was carried out using MATLAB R2022b/Simulink.

In this study, the pattern was (fig. 2)

7(0) = 5 — cos36 cm. (31)

Chose the system matrices of (4) to be

0 1 0
A= {o _21_12} , B= H , C = [657.550] .
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Fig. 4. Input-output characteristic after linearization.

The initial position of the cutting tool was
6(0) =0 rad, 7(0) =4 cm.

The desired rotational velocity of the spindle was (Fig. 3)

T w. 0
2(0) = 3 + ¢5i055 rad/s. (32)
The disturbance was chosen as
d(B) = 0.5sin560 + 0.35in30 V, By=[01]". (33)

The spatial sampling interval was chosen to be

2

Af = — rad (= 3.6°)

which means that a sampling occurs when 3.6° passed. We used an Incremental
Shaft Encoder and triggered blocks to implement the spatial sampling. Pulses per
revolution was set to be 5000. Thus, a sampling signal was generated every 500
pulses. Calculation and control were triggered when a sampling signal appeared.

To carry on the simulation of the IMPSRC method, we first verified the
linearization controller. As in (14), the linearization controller was implemented
using matrix exponential of system matrices and spatially sampled rotational
angle. Simulation result (Fig. 4) shows that after linearization, the input-output
characteristic of the system is nearly a one-step delay discrete system.

Then, we performed the IMPSRC method in simulation. We chose the per-
dictive horizon as N = 3. The weighting matrices were chosen to be

Q=R=P=ILy (34)

where Ij99 € R199%190 jg g identy matrix. The results (Fig. 5) show that the
system enters a steady state. The influence of the disturbance and uncertainty
is suppressed to lower than 0.2 cm in the steady state.
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Fig. 5. Results of reference tracking with disturbance (33).

6 Conclusion

This study presents an IMPSRC method for rotational systems tracking periodic
signals in the spatial domain. The designed system achieves the desired tracking
performance for spatial periodic references and rejects the disturbances. First, we
showed a modeling method in the spatial domain. Then, we presented the con-
figuration of the IMPSRC system. We presented a method to perform feedback
linearization for a discrete system. We showed an optimization problem based
on the repetitive control that achieves tracking without steady-state error the-
oretically by using it in an incremental MPC control. We verified the IMPSRC
method by simulations. The simulation results show that the method achieves
the desired performance of both reference tracking and disturbance rejection.
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