Tea Key Points Detection Based On Improved Yolov8
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Abstract. This paper introduces a novel method for detecting key points in tea
leaves, utilizing an enhanced version of YOLOv8. To improve the accuracy of
detecting tea leaf images under varying weather conditions, extensive data
collection was conducted, and Gamma correction technology was applied. This
approach aimed at optimizing the performance of images captured in different
lighting environments. A comprehensive dataset comprising high-quality
images was constructed. For the model design, YOLOVS served as the
foundational architecture, with the integration of the CSP (Cross Stage Partial)
module and DepGraph pruning method to optimize model parameters and
computational  efficiency. Experimental results indicate significant
enhancements in detection accuracy. The improved model exhibits robust
performance, particularly under varying lighting conditions. Furthermore, after
fine-tuning, the pruned model maintains high detection performance while
significantly reducing computational complexity, demonstrating the
effectiveness of the optimization strategies. These findings suggest that the
integration of advanced techniques in YOLOVS can significantly enhance key
point detection in tea leaves, offering valuable benefits for agricultural
applications.
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1 Introduction

Tea harvesting, a time-sensitive endeavor reliant on manual labor [1], faces
challenges due to the imprecision of traditional mechanical methods in selecting
optimal tea parts [2], often leading to inadvertent leaf damage and economic losses
[3]. The accurate grading of tea buds is essential for determining market value,
emphasizing the significance of precise picking points during processing . Leveraging
deep learning technologies has revolutionized agricultural practices, notably
improving the accuracy of tasks such as tea bud detection [4]. In this dynamic
landscape, integrating advanced technologies promises to redefine tea harvesting
methodologies.



Recent advancements in tea leaf detection have been greatly influenced by the
seamless integration of cutting-edge deep learning techniques. Sun et al. [5]
introduced a pioneering deep learning-based algorithm tailored specifically for
detecting tender tea buds amidst challenging backgrounds. Chen et al. [6] proposed an
efficient methodology for discerning fresh tea sprouts, leveraging sophisticated image
enhancement techniques alongside SSD methodologies. Li et al. [7] delved into
compressed deep learning models, unveiling a novel approach for achieving high-
efficiency tea shoot detection. Yang et al. [8] augmented the YOLO-V3 model,
providing support for robotic tea picking systems. Wang et al. [9] extended the
capabilities of the YOLOv3 model for heightened efficacy in tea leaf detection.
Additionally, Li et al. [10] harnessed the power of deep learning in tea leaf detection
and classification, enriching the process of assessing tea quality. Liu et al. [11]
proposed an innovative YOLOv4-tiny model for real-time tea bud detection,
enhancing operational efficiency. Xu et al. [12] modified the Mask-RCNN model for
real-time tea bud detection, revolutionizing tea production methodologies. Wu et al.
[13] leveraged YOLOv4 with self-attention mechanisms, ensuring robust tea leaf
detection in complex settings. Meanwhile, Zhang et al. [14] fused deep learning
methodologies with an enhanced SSD model, promising heightened detection
accuracy. Li et al. [15] developed a novel tea leaf detection approach anchored upon
the advanced YOLOvS5 model, pushing boundaries of detection precision further.
Additionally, Li et al. [16] devised a tea leaf detection algorithm based on an
enhanced Faster R-CNN model, enriching the repertoire of detection techniques.
Lastly, Xu et al. [17] made invaluable contributions to real-time tea bud detection
through modifications to the Mask-RCNN model, underscoring the pursuit of
efficiency and innovation in tea leaf detection methodologies. These seminal studies
underscore remarkable progress in tea leaf detection, facilitated by deep learning
technologies, paving the way for intelligent and automated systems in the tea industry
landscape.

The primary objective of this study was to establish a comprehensive dataset
tailored specifically for tea leaf detection, encompassing a wide array of weather
conditions. Utilizing advanced techniques such as gamma correction [18], diverse
lighting scenarios were meticulously simulated to ensure the robustness of the dataset.
Additionally, efforts were made to enhance the performance of the YOLOvVS-Pose
[19] model by introducing the more efficient CSP [20] module in place of the
conventional C2f module. To address the complex architecture of the YOLOvS8
model, the sophisticated DepGraph [21] method was adopted for precise model
pruning. This refinement process aimed to optimize the model for seamless
deployment, effectively bridging the gap between theoretical research and practical
implementation in the domain of tea harvesting. The overarching goal extends beyond
technological advancement, focusing on streamlining and revolutionizing the tea
harvesting process to enhance its efficiency and productivity. Through these efforts,
the study seeks to leverage advanced technology to usher in a new era of efficiency
and productivity in tea harvesting, ensuring sustainability and prosperity for future
generations.Materials and Methods



1.1  Data acquisition and construction of datasets

Spring, spanning from March to May, marks the prime season for tea harvesting.
During this period, tea buds are tender and the leaves are lush, ensuring top-notch
quality. Tea picked shortly after the Qingming Festival is especially valued for its
unique flavor and superior quality, making this time particularly ideal for harvesting.

The recent data collection took place immediately after the Qingming Festival,
using a smartphone camera with a resolution of 4096 x 3072 to capture detailed
images of tea leaves within the same tea plantation. The study focused on
documenting tea leaf conditions under various weather scenarios, including sunny,
cloudy, and rainy days, with sessions conducted both in the morning and afternoon.
To ensure high data integrity and relevance, photos were meticulously filtered,
excluding any that were blurry or lacked a clear subject. The resulting images provide
comprehensive visual documentation of tea leaf growth under different weather
conditions, offering valuable insights for analyzing tea quality.

However, capturing images during rainy weather posed significant challenges. The
tea bushes, covered with rainwater, resulted in pronounced reflections on the tea
leaves' surfaces, coupled with subdued overall lighting. Consequently, the quality of
the images taken on rainy days was compromised, with many failing to clearly depict
the intricate details of the tea leaves. Consequently, a substantial portion of the rainy-
day images were excluded during the subsequent screening process.

Following meticulous filtering, we discarded photos that were blurry, excessively
reflective, or suffered from inadequate lighting. Ultimately, only 886 high-quality
images were retained. These visuals not only document the optimal conditions of the
tea leaves during sunny and cloudy weather but also include a select few from rainy
days that met quality standards. This dataset provides a rich visual resource for further
research endeavors.Table 1 outlines the distribution of retained images according to
different weather conditions, underscoring the comprehensive nature of the dataset.

Table 1. Statistics of data under different weather conditions.

Weather Morning Period Afternoon Period
Sunny 162 166
Overcast 150 161
Rainy 119 128

During the annotation process of the captured tea leaf photos, stringent standards
were followed to ensure high quality and accuracy of the data. Special protocols were
implemented for instances where tea leaf targets were partially obstructed by other
objects. If the obstruction resulted in less than 60% visibility of the tea leaf target,
annotation was refrained from to prevent inaccurate data from affecting the overall
annotation quality. For the tea leaf targets, annotations included not only bounding
boxes but also six key points: bud_top, bud_bottom, leaf top, leaf bottom, stem_top,
and stem_bottom. Among the valid images, the quantity of tea leaf targets was



recorded, with some images containing annotations for up to 13 targets. These
densely annotated images provided ample samples for model training.

2000800000000

Fig. 1. Annotation process of the tea leaf by X-anylabeling

Upon completion of the annotation process, the annotated images were partitioned
into training, testing, and prediction sets according to a 6:2:2 ratio. The training set,
comprising 60% of the data, was used for model learning and refinement, while the
testing set, accounting for 20%, served to evaluate model performance. The remaining
20% formed the prediction set, used to assess the model's predictive capabilities on
unseen data. This meticulous approach to annotation and partitioning ensured the
robustness and efficacy of the dataset, facilitating enhanced model training and
evaluation processes.

While diversity of weather conditions was considered during tea leaf image
capture, the concentration of shooting times led to an uneven distribution of image
data under different lighting conditions. Given the relatively weak robustness of deep
learning models to outdoor lighting variations, it became necessary to enhance the
dataset to improve the model's adaptability to varying lighting conditions. To address
this, the dataset was supplemented with tea leaf images under different lighting
conditions by adjusting image brightness using Gamma Correction technology. This
method applies non-linear transformations to pixel values, allowing precise control
over image brightness and contrast by adjusting the Gamma Value. A Gamma Value
greater than 1 brightens the image, while a value less than 1 darkens it.This approach
enabled random enhancement of the brightness and contrast of images in the dataset,
covering a broader range of lighting scenarios. As a result, the sample size of tea
leaves under different lighting conditions was expanded, strengthening the model's
generalization capability.



Fig. 2. Utilizing gamma correction to simulate various lighting conditions

1.2 Basic model

The backbone network of YOLOvVS Pose is fundamental for extracting multi-scale
features from input images, forming the foundation of the entire model. It primarily
consists of the Convolutional module (Conv), the C2f module, and the SPPF module.
The Conv module employs standard convolution operations and typically comprises
convolutional layers, Batch Normalization (BN), and the SiLU (Swish) activation
function. Compared to the traditional ReLU activation function, SiLU offers
improved gradient flow and training stability. The C2f module is a crucial component
of YOLOvVS's backbone network, designed to simultaneously process and fuse multi-
scale features through multiple convolutional layers of different scales. In comparison
to the ELAN module in YOLOvV7[22], the C2f module has been optimized to more
effectively integrate deep information. The SPPF module (Spatial Pyramid Pooling -
Fast) achieves multi-scale feature extraction through stacked 3x3 pooling operations
that approximate larger pooling windows, thus reducing computational complexity.
SPPF captures context information of various scales, enhancing the model's ability to
detect targets.

The neck network of YOLOvS8 Pose enhances the detection capability for targets of
different scales by further processing and fusing the feature maps outputted by the
backbone network. This network employs advanced feature fusion techniques,
including Feature Pyramid Network (FPN) and Path Aggregation Network (PAN).
FPN is utilized to generate multi-scale feature maps by integrating features from
different hierarchical levels in a top-down manner. This process enhances the spatial
resolution of high-level feature maps and enriches the semantic information of low-
level feature maps, thereby improving the detection capability for small targets. PAN,
an extension of FPN, facilitates bidirectional feature information flow by not only
transmitting high-level features to low-level ones but also feeding back low-level
features to high-level ones. This design further strengthens the fusion effect of feature
maps and enhances the model's capability to handle small targets and complex scenes
by increasing the expressive power of low-level features.



The head network of YOLOv8 Pose transforms feature maps into detection results
using an innovative anchor-free design and specifically predicts human keypoints
through dedicated modules. The Pose module serves as the core component of the
head network, focusing on pose estimation. This module predicts the coordinates of
each target's keypoints through specific convolutional layers, outputting two-
dimensional coordinates (x, y) along with confidence scores. This design enables the
model to accurately identify keypoints of the human body. In terms of loss function
design, YOLOv8 Pose combines boundary box regression and pose estimation. It
typically employs the CIoU[23] (Complete Intersection over Union) loss to optimize
boundary box prediction, uses cross-entropy loss for target category prediction, and
adopts MSE (Mean Squared Error) to measure the gap between predicted keypoints
and real keypoints, while also considering the confidence of keypoints. This multitask
loss function design enhances the accuracy and stability of the model in pose
estimation tasks.

1.3 Architecture of Yolov8 with CSP

The Partial Dense Block, a fundamental element of the CSP module, is inspired by
DenseNet's dense connectivity concept. Unlike traditional Dense Blocks, it adopts a
partial connectivity strategy to alleviate parameter explosion and computational
overhead. Comprising multiple dense blocks, each block contains convolutional
layers where inputs are not only received from the preceding layer but also from all
preceding layers within the same block. However, unlike conventional Dense Blocks,
Partial Dense Blocks establish connections solely among specific dense blocks,
strategically limiting excessive parameter growth. This partial connectivity approach
effectively mitigates computational complexity while maintaining robust feature
expression capabilities.

Partial Transition Layers, integral to the CSP module, play a crucial role in
adjusting feature map dimensions similar to the transition layers found in ResNet.
However, they employ a partial connectivity strategy. Composed of convolutional and
pooling layers, Partial Transition Layers facilitate the resizing of input feature maps to
align with the dimensions of subsequent layers. Unlike traditional transition layers,
which resize all feature maps uniformly, Partial Transition Layers selectively resize
specific feature maps. This targeted approach minimizes computational burden while
preserving the diversity and richness of feature maps. By employing this partial
connectivity method, feature map resizing operations remain efficient and effective,
thereby enhancing the overall performance and efficiency of the CSPNet architecture.
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Fig. 3. The architecture of Yolov8-Pose with CSP

Replacing the C2F portion of the neck structure in YOLOv8 with CSP brings several
benefits. Firstly, the CSP module introduces a partial connectivity scheme, optimizing
parameter usage and computational efficiency. By selectively fusing features across
stages, CSP reduces redundant computations, enhancing overall performance.
Secondly, CSP enhances feature propagation by strategically merging information
from previous layers, leading to richer representations and improved model
understanding. Additionally, CSP offers better parameter efficiency compared to C2F,
as it controls parameter growth while maintaining or even improving performance.
Moreover, the versatility of CSP has been demonstrated across various tasks, ensuring
robustness and adaptability in different scenarios. Ultimately, this replacement aligns
with the pursuit of improved efficiency and performance in YOLOVS, contributing to
its effectiveness in real-world applications.

1.4  DepGraph Prune

In neural networks, layers often have complex parameter dependencies. For
example, in YOLOVS’s convolutional modules, pruning a convolutional layer requires
simultaneous adjustments to its associated batch normalization (BN) layers and
residual connections to avoid disrupting the network's architecture and functionality.
These dependencies vary across different modules, appearing as residual, connection,



and reduction dependencies. Effective structural pruning must account for these inter-
layer dependencies. To this end, the dependency graph (DepGraph) is used to
explicitly model these relationships, representing layers as nodes and their
dependencies as edges. Constructing a dependency graph involves accurately
identifying direct dependencies between layers, enabling precise modeling of the
network's structural dependency patterns.

In the dependency graph, we focus on the direct dependency relationships between
layers of the neural network and translate these relationships into edges in the graph.
This process includes dependency matrix construction, dependency graph generation,
and recursive dependency expansion.The dependency matrix G is used to record the
dependency relationships between layers in the neural network.In this matrix, Gi=1
indicates that layer i depends on layer j meaning that during pruning operations, layer
j influences the results of layer i. In this matrix, Gij= 1 indicates that layer i depends
on layer j, meaning that during pruning operations, layer j affects the output of layer i.
The dependency matrix comprehensively records the direct dependencies between
layers in the network.

D ={(, ), (i, k)} (M

Where the edges (i, j) and (i, k) indicate in the dependency graph that there is an edge
from layer i to both layers j and k, indicating that layer i depends on both layers j and
k.To comprehensively cover the dependency relationships of all layers in the network,
it is necessary to recursively expand the dependencies of each layer. This means
starting from each layer and gradually expanding the dependency relationships of its
dependent layers until all direct and indirect dependencies are included. This ensures
that the dependency graph accurately reflects the mutual dependency patterns of all
layers in the network.

When performing Group-level pruning on Yolov8, a criterion for assessing the
importance of parameter groups within layers is needed. Traditional single-layer
importance criteria perform poorly when dealing with complex dependency
relationships because they fail to capture the interplay between layers. To address this
issue, a dependency-graph-based group-level importance criterion is utilized.

For each layer i, the importance score I; of its parameters W; can be calculated
using different criteria, such as:

1 =W 1l p 2)
Where ||Wi||p denotes the p-norm ( L2 norm) of the parameters Wi.The group-level

importance score Igoup is the average or weighted average of the importance scores of
all layers within the group.

| N
I =— > [ 3
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Where Ny is the number of layers in the k-th group, and I is the importance score of
the parameters of the i-th layer in the k-th group.

After pruning based on the group-level importance score Igowp and a predefined
prune-rate, the network structure may change. Hence, adjustments are necessary to



maintain its functionality: For pruned layers, adjust their input and output connections
to ensure uninterrupted forward propagation paths in the network.Fine-tune the
pruned network to restore or enhance its performance compared to before
pruning.These steps ensure that the pruned network remains functional and effective
in its tasks.

2 Experiments

2.1 Comparative experiment

The software and hardware environment and parametersused in this experiment are
shown in table 2.
Table 2. Software and hardware parameters

Accessories Specification
Operating system Ubuntu-18.0.4
CPU 12th Gen Intel(R)core(TM)i7-12700F
GPU NVIDA RTX3080
Python3.9, Pytorch2.2.1,

Development environments CUDAL0.8

The YOLOvVS codebase (available at 'Ultralytics/Yolov8') served as the
foundational framework, extended and customized according to the specifications
outlined in section 2.3. During training, the Stochastic Gradient Descent (SGD)
optimizer was employed, initialized with a learning rate of 1E-3, which decayed to a
final rate of 1E-5, while incorporating a weight decay of SE-3 to mitigate overfitting.
Momentum was set to 0.8 for the initial three warm-up phases before adjusting to
0.937 for subsequent iterations. The training regimen spanned 300 epochs with a
batch size of 8, and horizontal flipping augmentation was disabled.
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Fig. 4. Model metrics comparison
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The evaluation metrics include precision, recall, and mean Average Precision (mAP)
at IoU thresholds of 0.5 and 0.5-0.95, serving as performance benchmarks.
Comparative analysis reveals a significant improvement across all evaluation metrics
in the improved model. Notable enhancements include a 3.5% increase in precision, a
4.5% boost in mAPS50, indicating superior detection capability and robustness in the
improved model. The observed performance enhancement underscores the
effectiveness of optimization strategies in the improved model. The increased
precision implies a reduction in false positives, crucial for applications requiring
precise target localization.

2.2 Prunning with DepGraph

When using the DepGraph method to prune the YOLOvV8 model, it's essential to
consider the importance of the initial convolutional modules in feature extraction.
Therefore, we have decided not to prune this part to avoid significant accuracy loss.
Instead, our focus will be on pruning the remaining parts of the backbone and the
neck through convolutional operations. We adopt an iterative approach to gradually
prune the model to the specified pruning rate. In each iteration, we fine-tune the
model for 50 epochs before proceeding to the next pruning round.

—— recovered mAP
—— pruned mAP :
MACs
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min mAP = 0.45

0.4 -
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0.3 -
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Fig. 5. Model performance with difference pruning ratio
Using MACS (Model Arithmetic Computations) and mAP (mAP50) as metrics to
evaluate model performance, it's evident from the graph that after model pruning,
there is a noticeable decrease in mAP, signifying a discernible level of performance
degradation due to pruning. However, through fine-tuning, the model's performance is
effectively restored, underscoring the pivotal role of fine-tuning in optimizing pruned
models.On the other hand, the corresponding MACS after pruning exhibits an
exponential decrease, indicative of a successful reduction in model computational
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complexity, thereby facilitating more efficient inference. Despite the decline in
MACS, the model's mAP remains at an acceptable level. Notably, when model
pruning reaches approximately 55%, the accuracy of the refined model remains on par
with the original model. Furthermore, with pruning reaching around 80%, the model's
MAP continues to exceed 0.5, nearing the performance level of the unoptimized
model.

From the images, it is evident that even after pruning 50% of the model, it still retains
commendable recognition capabilities. This indicates that despite reducing the
model's complexity significantly, its performance has not noticeably degraded and it
continues to accurately recognize target objects. This further validates the positive
impact of pruning strategies on optimizing the model while maintaining its
performance.

3 Conclusion

Our model design incorporated YOLOvVS8 as the core architecture, augmented by
the CSP module and DepGraph pruning method to refine model parameters and
improve computational efficiency. The experimental results highlighted substantial
improvements in detection accuracy. The enhanced model demonstrated strong
performance, especially under fluctuating lighting conditions. Moreover, fine-tuning
allowed the pruned model to sustain high detection performance while markedly
reducing computational complexity. These outcomes indicate that advanced
techniques integrated into YOLOVS can significantly bolster key point detection in tea
leaves, offering a valuable tool for agricultural applications. The model's capability to
handle diverse lighting scenarios and maintain efficiency underscores its practical
potential for real-world deployment.
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