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Abstract. In recent years, there has been a rapid increase in interest
regarding the widespread application of Convolutional Neural Networks
(CNNs) in Computer-Aided Diagnosis (CAD) and image-based diagno-
sis. However, CNN-based diagnostic approaches still face numerous chal-
lenges in terms of interpretability. Previous studies have proposed the use
of CycleGAN to analyze the classification processes of CNNs, suggesting
its potential to enhance interpretability. CycleGAN is characterized by
its ability to transform specific parts of an image without altering the
background, allowing it to capture more detailed information such as dif-
ferences in shapes and patterns within regions, compared to traditional
methods like Grad-CAM. This study aims to apply CycleGAN to the
disease pneumoconiosis to visualize which parts of the image the classi-
fication model focuses on when making its determinations. The results
reveal that the brightness across the entire lung field changes before and
after transformation, suggesting that the classification model may be fo-
cusing on the degree of brightness within the lung region when identifying
pneumoconiosis.
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1 Introduction

Pneumoconiosis is a lung disease caused by the long-term inhalation and ac-
cumulation of dust and fine particles, leading to various pathological changes
in the lungs[1]. Pneumoconiosis is identified using chest X-ray images by de-
tecting the presence of ground-glass opacities. However, because these opaci-
ties often overlap with structures such as blood vessels, the interpretation pro-
cess is time-consuming and burdensome for physicians. As a result, research on
Computer-Aided Diagnosis (CAD) systems has been gaining attention. CAD
includes medical image analysis and are used for a second opinion to support
physicians in their diagnosis with its objective decision. Convolutional Neural
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Networks (CNN) is widely employed[2]. As examples of high-precision diagnosis
using CNN, Manickavasagam et al. have proposed a model for detecting lung
nodules with an accuracy of 98.88%][3], while Alkurdi et al. proposed a model
for detecting breast cancer with an accuracy of 98%][4]. However, CNN-based
diagnosis have a difficulty of interpretability of those results. Therefore, it is
important to ensure that diagnostic results are explainable. To achieve this, the
explainable AT (XAI) is required. XAI is a technique that explains how an Al
system makes specific decisions or predictions in a way that humans can un-
derstand. In the medical field, it is essential to clearly present the basis for
diagnostic results and the features or regions the Al used for its decisions. This
enables physicians to trust the Al-generated results and incorporate them into
their diagnoses and treatment plans. One example of XAl is Class Activation
Map (CAM) [5]. CAM are used for CNN results to identify regions contributing
to the classification results. CAM provides interpretability to CNN, however,
CAM provides only the information of location of regions which affects to the
result and does not provide other information such as shape, intensity, or pat-
tern. In the medical analysis, the differences of such information are important
for the interpretability. In the study by Tsutsui and Yoshida [6], they employed
CycleGAN [7], a type of Generative Adversarial Network (GAN) [9], as an an-
alytical method to acquire both the regions contributing to classification and
the differences in shapes and patterns within those regions. In previous studies,
high-accuracy classification results (95.43%) were achieved by inputting images
of the extracted lung field regions into a CNN. Therefore, in this study, we aim
to apply CycleGAN to images of pneumoconiosis, a lung disease, to identify the
regions that contribute to the classification of pneumoconiosis, as well as their
shapes and patterns.

2 Method

2.1 Explainable CNN using CycleGAN

We use the explainable artificial intelligence technique proposed by Tsutsui and
Yoshida [6], which uses CycleGAN. This method learns the transformation of
images between two classes, which mean no-finding class and pneumoconiosis
class. Then the an image is converted to the other class. The difference of images
are computed between post- and pre-transformation.

2.2 Dataset

For medical applications, we use chest X-ray images of pneumoconiosis patients
as the dataset. In order to improve the quality of diagnose pneumoconiosis on
the lung field region, we use image segmentation to extract the lung field regions
using U-net(Fig. 1). The original images were obtained from the chest X-ray
image datasets provided by NIOSH (National Institute for Occupational Safety
and Health), Kochi University Medical School (KM), and NIHCC (National
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(a) healthy (b) pneumoconiosis

Fig. 1: Pneumoconiosis images

Institutes of Health Clinical Center) [14]. The dataset included a total of 234
images, comprising 117 images each of pneumoconiosis patients and healthy
individuals. To ensure consistency during the training process, the images were
standardized to a size of 512x512 pixels. Of these, 212 images were used for
training and 22 for testing.

2.3 Model structure

CycleGAN consists of a discriminative model and a generative model, which are
learned adversarial. In this section we describe the generative model and the
discriminative model.

Generative model The generative model consists of an encoder (feature ex-
traction component), 9 residual blocks, a Self-Attention layer, and a decoder
(output component). Instance Normalization is used for normalization, and ReLU
is employed as the activation function. The input images are grayscale images
with dimensions of 512x512. In the encoder, the input images undergo downsam-
pling using a stride-1 convolutional layer followed by two stride-2 convolutional
layers. Subsequently, various image features are extracted using 9 residual blocks.
The structure of the generator is shown in Table. 1.

Discriminative model The discriminative model extracts features from im-
ages and outputs a 30 x 30 feature map. Batch Normalization is employed for
normalization, and the ReLU activation function is used. The structure of the
discriminator is detailed in Table 2.

2.4 Experiment

After training CycleGAN using the dataset, the images are transformed between
pneumoconiosis and healthy classes. Then the difference between the original
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Table 1: Internal structure of the encoder

Encoder
kernel size connection method stride|Number of filters
Tx7 Convolution; Instance Normalization; ReLU 1 64
3x3 Convolution; Instance Normalization; ReLU 2 128
3x3 Convolution; Instance Normalization; ReLU 2 256
Transformer
Residual blocks
Residual blocks1
Residual blocks2
Residual blocks3
Residual blocks9
Decoder
kernel size connection method [stride[number of filters
3 x 3 |Transposed Convolution; Instance Normalization; ReLU| 2 124
3 x 3 [|Transposed Convolution; Instance Normalization; ReLU| 2 64
7 x 7 |Transposed Convolution; Instance Normalization; ReLU| 1 Jorl
Table 2: Internal structure of the discriminator model.
kernel size‘ connection method ‘stride‘number of ﬁlters‘
3 x 3 |Convolution; Batch Normalization; ReLU| 1 64
3 x 3 |Convolution; Batch Normalization; ReLU| 1 64
2x2 Max Pooling 2 64
3 x 3 |Convolution; Batch Normalization; ReLU| 1 128
3 x 3 |Convolution; Batch Normalization; ReLU| 1 128
2x2 Max Pooling 2 128
3 x 3 |Convolution; Batch Normalization; ReLU| 1 256
3 x 3 |Convolution; Batch Normalization; ReLU| 1 256
3 x 3 |Convolution; Batch Normalization; ReLU| 1 256
2x2 Max Pooling 2 256
3 x 3 |Convolution; Batch Normalization; ReLU| 1 512
3 x 3 |Convolution; Batch Normalization; ReLU| 1 512
3 x 3 |Convolution; Batch Normalization; ReLU| 1 512
2x2 Max Pooling 2 512
3 x 3 |Convolution; Batch Normalization; ReLU| 1 512
3 x 3 |Convolution; Batch Normalization; ReLU| 1 512
3 x3 |Convolution; Batch Normalization; ReLU| 1 512
3 x 3 |Convolution; Batch Normalization; ReLU| 1 1

and transformed images is calculated. This difference is converted into an im-
age to evaluate the change pattern before and after the transformation. The
difference image is designed to appear brighter when pixel values increase and
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Table 3: Hyperparameters of dataset(CycleGAN)
epoch|Batch Size|Optimizer|Learning Late
700 1 Adam 2x 107"

darker when pixel values decrease. Gray regions show no change between pre-
and post-transformation. In addition, the mean and standard deviation of the
pixel values of the original and converted lung images are calculated to evaluate
the influence of the pixel values during conversion.

Note that in CycleGAN training, the hyperparameters are set as shown in
table 3. Set the number of epochs to 700 and the batch size to 1. Also, use the
Adam optimizer and set the learning rate for both the generative and discrimi-
native models to 2 x 1074,

3 Result

The results of the experiments conducted using the prepared datasets are de-
tailed below. Using CycleGAN, we performed transformations from pneumo-
coniosis to healthy and from healthy to pneumoconiosis, and we describe the
changes in appearance and pixel value variations observed in the resulting im-
ages.

3.1 transformation results

In the transformation from pneumoconiosis to healthy, a general decrease in
the brightness of the lung fields was observed(Fig. 3). This is attributed to the
emergence of characteristic brightness patterns typical of healthy lungs in the
transformed images. Conversely, in the transformation from healthy to pneumo-
coniosis, an increase in the brightness of the lung fields was noted(Fig. 5). This
is likely due to the addition of features associated with pneumoconiosis, which
result in higher overall brightness in the lung fields.
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Fig. 2: Transformation from pneumoconiosis to healthy (1/2)
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Fig. 3: Transformation from pneumoconiosis to healthy (2/2)

Fig. 4: Transformation from healthy to pneumoconiosis (1/2)
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Fig. 5: Transformation from healthy to pneumoconiosis (2/2)
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Fig. 6: Distribution of pixel value changes in images transformed from pneumoconiosis
to healthy

3.2 Distribution of pixel value changes in images transformed

Describe the variations in pixel values. Observing trends in changes by aver-
aging the pixel values of difference images before and after transformation for
each of the 22 test images, the following observations were made: When trans-
forming from pneumoconiosis images to healthy images, there was a tendency
for many pixel values to decrease (Fig. 6). Additionally, some cases showed no
significant difference in pixel values before and after transformation. Conversely,
when transforming from healthy images to pneumoconiosis images, there was
an overall tendency for pixel values to increase (Fig. 7). Similar to the transfor-
mation from pneumoconiosis to healthy images, some cases exhibited minimal
differences in pixel values before and after transformation.

In summary, when using CycleGAN to transform pneumoconiosis and healthy
lung images, there was a trend observed towards changing the overall brightness
of the lung field regions.

4 Discussion

From the experiment results, it was found that transforming pneumoconiosis im-
ages and healthy images led to changes in brightness. This is believed to be due
to an overall increase in brightness across the lung field affected by pneumoconio-
sis. However, no specific parts of the lung, such as fibrous objects characteristic
of pneumoconiosis symptoms, were generated or removed; only the brightness
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Fig. 7: Distribution of pixel value changes in images transformed from healthy to pneu-
moconiosis

changed. This suggests that CycleGAN may be discerning pneumoconiosis based
solely on changes in brightness.

Furthermore, some images showed little change or changes opposite to ex-
pected patterns after transformation. This indicates instances where CycleGAN
did not perform the transformation effectively. The reasons for these unsuccessful
transformations remain unclear and will be investigated as future work.

From these results, CycleGAN’s potential to identify pneumoconiosis based
on changes in brightness is suggested. However, it was observed that the addition
or removal of dust, a symptom of pneumoconiosis, was not achieved. Therefore,
this approach may not be suitable for diseases where features contributing to
symptoms, such as changes in lung roughness, are localized within the overall
region of the lung.

5 Conclusion

In this study, we used CycleGAN to perform mutual transformations between the
lungs of pneumoconiosis patients and healthy individuals. By investigating the
changes before and after the transformations, we analyzed the criteria and trends
in CycleGAN’s pneumoconiosis-to-healthy and healthy-to-pneumoconiosis con-
versions. Additionally, we calculated the differences in pixel values before and
after the transformations and analyzed the distribution of the average changes
to substantiate the observed trends. As a result, when transforming from pneu-
moconiosis to a healthy image, a decrease in the brightness across the entire lung
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field was observed. Conversely, when transforming from healthy to pneumoco-
niosis, an increase in brightness across the entire lung field was noted.

These results suggest that CycleGAN may be determining pneumoconiosis
based on the degree of brightness. Additionally, since no specific parts of the
lung were generated or removed, it is implied that CycleGAN might not be
using or placing much importance on features other than brightness changes.
Moreover, there were instances where the transformations by CycleGAN were
not successfully executed.

Future research will aim to improve the accuracy of CycleGAN transforma-
tions and apply other explainability methods that can capture more detailed fea-
tures. This will help explore whether features other than brightness are involved
in the determination of pneumoconiosis. On the other hand, in XAI research,
another approaches are also studied. For example, in [16], Al-generated images
are used to explain the result of CNNs. Furthermore, other studies use other
types of GANSs to achieve explainability for diseases of the lungs and liver[17]. It
is important to compare our method with these methods to further refine and
advance the research.
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