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Abstract. In view of the shortcomings of deep learning methods in modeling
small sample fault data, this paper proposes a fault classification method based
on Graph Attention Convolutional Neural Network (GATCN) combined with
Transformer, which can be well adapted to small sample fault data sets. Firstly,
the multi-dimensional sensor data is converted into a multi-component graph
representation, and the weights of the edges are updated by the attention
mechanism between the nodes of the graph to represent the topological
structure between different nodes, to extract the correlation between the multi-
component parameters. Then, the Transformer module learn the extracted
spatial features to capture the temporal feature relationships of the time series
data. Finally, the classification layer based on Softmax is used to classify faults.
The model is demonstrated on the TEP data set and the fault datasets from three
satellite subsystems. The results show that our model is superior for small
sample fault data sets.

Keywords: Small Sample, Fault Classification, Graph Attention Neural
Network, Graph Convolutional Neural Network, Transformer.

1 Introduction

With the increasing complexity and intelligence of engineering equipment, fault
classification technology has become one of the key technologies to ensure the safe
and stable operation of equipment. Traditional fault classification methods mainly
rely on human experience and physical models [1], but these methods often have
problems such as low efficiency, insufficient accuracy, and difficulty in modeling. In
recent years, with the improvement of sensing and computing technology, more and
more on-site real-time data are available, which creates favorable conditions for fault
classification methods based on data-driven deep learning [2]. However, in many
scenarios, there are only small samples and unbalanced fault data, and general deep
learning methods cannot effectively extract data features, resulting in low diagnostic
accuracy [3]. Graph Attention Neural Network (GAT) [4] and Transformer [5], as two
powerful deep learning models, show great potential in the field of fault classification.
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Fault classification methods are divided into knowledge-based and data-driven.
Knowledge-based methods rely on models and expertise but falter in complex
systems.In data-driven deep learning, models learn useful feature representations from
data with minimal reliance on prior knowledge, thereby enhancing their
generalization capabilities. This enables them to handle high-dimensional and
complex datasets, uncover hidden patterns and rules within the data, and effectively
perform fault classification.

One of the existing data-driven deep learning fault classification methods is
Convolutional Neural Network (CNN) [6-8], The architecture of CNNs, designed
with convolutional layers for applying filters to local input data and followed by
pooling layers for dimensionality reduction, adeptly captures spatial features from
images but has limitations in capturing temporal dynamics or long-term dependencies
in time series data, which may lead to overlooking important temporal features critical
for fault detection in systems where time-dependent patterns play a significant role.
Recurrent Neural Network (RNN), with their architecture of recurrent layers that
maintain hidden states across time steps, can recognize and predict failure modes by
learning time dependencies in data. However, for long time series, RNNs cannot
effectively capture all dependencies [9-10], and their inference speed is limited, they
are also sensitive to input noise and outliers [11].

Deep Belief Networks (DBNs) are composed of multiple layers of Restricted
Boltzmann Machines (RBMs) topped with a final softmax classification layer,
utilizing an unsupervised pre-training phase followed by supervised fine-tuning [12].
However, this complex architecture is prone to overfitting, particularly on small
datasets, as the unsupervised pre-training might not efficiently capture fault-specific
features when data is limited. Consequently, this can lead to extended training times
[13-14]and poor generalization to small sample sizes, rendering DBNs less effective
for real-time fault detection tasks. In addition, the above methods all have high
requirements on the amount of data. For the small sample fault, feature extraction is
incomplete, and the deep representation of the data cannot be learned [15].

The powerful graph data processing capability of semi-supervised Graph
Convolutional Neural Network (GCN) enables it to effectively process complex
graph-structured data in fault classification. In complex systems, the connection
relationship between devices can be naturally represented as graph structure [16].
GCN can use this graph structure data to extract fault features, including node
features, edge features, and connection relationships between nodes, through
information transmission and aggregation among nodes, to comprehensively capture
fault features in the system [17]. However, the content of node information that GCN
can capture is too small to obtain the global node relationship, while GAT will
selectively aggregate information from neighbor nodes through the attention
mechanism when transmitting messages, without using any matrix operation to select
the information of neighbor nodes. Thus, the expression capability of graph
convolutional networks is greatly improved [18].

By integrating Graph Convolutional Network (GCN) with attention
mechanisms, we have developed a Graph Attention Convolutional Neural Network
(GATCN) that not only establishes a feature graph of effective fault data but also
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fully utilizes known label data to extract the relationships between nodes and edges
within the graph structure, without an over-reliance on data quantity accumulation. To
enable the model to learn both temporal and spatial correlations among parameters,
we have combined the GATCN with the Transformer's [19] temporal feature
extraction capabilities, resulting in an enhanced model known as GATCN-
Transformer. This hybrid architecture allows GATCN to handle spatial features using
graph-based attention, while the Transformer processes sequential temporal data
using self-attention mechanisms across time steps. The GATCN-Transformer
leverages the spatial feature extraction capabilities of GATCN and the temporal
feature extraction strengths of Transformers, with the Transformer's self-attention
mechanism adept at capturing long-term dependencies and dynamic patterns in time
series data, complementing GATCN's graph-based feature extraction. This approach
addresses the limitations of CNNs, RNNs, and DBNs by providing a more holistic
method that excels in both spatial and temporal dimensions, offering enhanced
accuracy and real-time fault detection capabilities, especially effective with small
datasets and dynamic data. The advantages of GATCN-Transformer have been
experimentally verified through comparisons with other methods, and its
effectiveness for small sample faults was validated by augmenting the small sample
fault dataset and comparing the accuracy of different models under varying data sizes.

2 Method

In this paper, the classification of time series faults occurring in real industrial
processes is transformed into the classification of graphs. As shown in Figure 1, we
convert the multidimensional time series into a multivariate graph G(V,E,4), which

mainly includes node V, edge E and adjacency matrix RN*NEach node V
represents a one-dimensional variable, n-dimensional time series data contains N
nodes, and the node matrix = {Xy,Xs,...,Xn}, Where RT, which contains all

node information. All nodes are connected through edge E, and each edge is assigned
a different weight vector, representing the connection relationship between different
nodes, which is represented by the adjacency matrix A. Then, the constructed
multivariate graph G is computed with attention, and the feature information between
different variables is extracted. Input the calculated results into Transformer for
reconstruction and output, so that the obtained feature graph contains both spatial and
temporal features. Finally, the fault classification is carried out through Softmax, and
the fault classification task is transformed into the classification task of different
graphs.

The model comprises three parts: a Graph Attention Neural Network for spatial
feature extraction, a Transformer for temporal feature extraction, and a residual-based
fault classification layer. Multi-dimensional time series are segmented into
subsequences that form multivariate time graphs. Features are extracted using a graph
convolutional network to determine node connections. These features are input into
the Transformer, processed through multi-head attention and residual connections to
capture spatiotemporal correlations. A fully connected layer maps these features, and
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a SoftMax layer classifies faults. Details of each module are elaborated in subsequent
sections.
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Fig. 1. Model structure diagram.

2.1  The spatial feature extraction layer of a graph convolutional neural
network based on attention

Since the time series itself does not have a graph structure directly, it needs to be
transformed first. As shown in Figure 2, for multidimensional time series, each one-
dimensional parameter is regarded as a node in the time graph, and the node matrix X
is obtained by selecting an appropriate time window. Then initialize the connection
between the nodes to get the edge set = {ej, e5,...,en}, In set E, there can be at
most 2 x 2 edges, the first column is the starting point of the edge, the second
column is the end point, and the adjacency matrix 4 of the edge represents the weight
of each edge [20].

We used GAT to extract spatial features from the original time series [21]. For a
single node , the calculation process of its attention coefficient is as follows:

= (I ) 0
=< , >/ )

This represents the importance of the features of node j to node i.  is the
attention function, <> represents the dot product. Then all the obtained attention
scores are normalized, and the calculation process is as follows:

_ )
= _ 3
() = 3)
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Fig. 2. Transforms the time series into a graph structure.
The weighted sum results in the attention values of all other nodes to node i, as shown
in Formula 4. At the same time, in order to stabilize the learning process of attention,

the mechanism of multi-head attention is adopted, and the number of heads is selected
as k [22], as shown in Equation 5.

()
SEa )

Then the model output is updated using graph convolution [23].

= sym (6)
= ™
= + ®

where X is the node matrix, W represents the projection matrix used to enhance the
node feature and obtain more spatial representation. Matrix [ is the identity matrix,
representing the node's connection to itself. Matrix M is the attention matrix of all

nodes.
= (.= (=) O ©)

Fig. 3. Figure node attention calculation process.
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2.2 Time feature extraction layer based on Transformer

The node feature matrix X' output by GAT is taken as the input of Transformer [24].
The feature matrix first passes through the embedding layer for positional encoding to
get suitable input for the Transformer.
E @) (10)
The Transformer's encoder extracts temporal features and captures dependencies
across time steps via multi-head attention. It is followed by a feed-forward network,
residual connections, and layer normalization to enhance training stability and
convergence. A fully connected layer then maps the output to target dimensions,
enabling the model to learn from minor input variations while maintaining feature
distribution stability.

= (+ () (an
S B

= () (13)

In this way, the output features through Transformer contain both the previous

spatial and temporal correlation features. Finally, the raw output is transformed into a

probability distribution through the Softmax layer, which describes the probability of
the input data belonging to each category.

3 Experiments and Discussions

The software environment of the experiment is Windows11 64-bit operating system,
with 6GB of RAM, using the PyTorch framework on the PyCharm platform. The
hardware environment is an AMD Ryzen 75800H processor and an RTX 3060 Laptop
GPU graphics card. The model parameters are set as follows:

(1) Using the Adam optimizer, with the initial learning rate set to the default
value 0of 0.001;

(2) The learning rate attenuation mechanism is adopted, and the learning rate is
multiplied by the attenuation coefficient 0.1 for every 5 epochs of training, so as to
solve some unstable situations and improve the stability of the model.

3.1 Data set and experimental setup

The experimental data was selected as Tennessee Eastman Process Data Set (TEP),
which is a practical chemical process simulation data set and a classical data set used
for anomaly detection and process control, with relatively few fault data samples,
belonging to a typical small sample data set. It contains 33 process variables and 19
quality variables. The data set covers 21 fault conditions and one normal condition,
each containing a training sample and a test sample. The training samples were
obtained under 25h running simulation, and the total number of observations was 500.
The sample of the test set was obtained under 48h simulation, with the fault
introduced at the 8" hour. A total of 960 observed values were collected, among
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which the first 160 observed values were normal data, and the data sampling time was
3 minutes. In the experiment, all fault samples were selected, a total of 21 fault types,
each of which contained all 52 parameters, and the model was trained using training
set. At the same time, the simulated in-orbit satellite subsystem data were selected for
the experiment, namely, attitude and orbit control subsystem (AOCS), power supply
and distribution subsystem (PSD) and laser payload subsystem (LPS). The AOCS
contains 74 parameters and 13 types of faults, PSD contains 51 parameters, 13 types
of faults, and LPS contains 126 parameters, 13 type of faults. At the same time, all the
faults in the four data sets are divided into two types: slowly-varying faults and abrupt
faults. Table 1 provides detailed descriptions of the different datasets. The second
column shows the total amount of original fault data, the third column presents the
total amount of data after sliding window processing, and the last column lists the
number of fault types in different datasets.

Table 1. Data set information.

Data set Raw data length Total amount of data after Number of fault
conversion types
TEP 17010,52 1680,30,52 21
PSD 35950,51 3548,30,51 13
LPS 45860,126 4547,30,126 13
AOCS 26890,74 2650,30,74 13

3.2 Time window selection

In data analysis and model construction, the choice of time window determines the
data features and patterns that can be captured by the model. Larger time windows
can capture longer-term trends in the data, reducing biases due to random
perturbations and providing a better global view. However, a small time window can
quickly respond to short-term changes and has higher flexibility. Considering the
sampling frequencies of four data sets, 30 is selected as the time window of the
model, which can not only ensure that the data has sufficient temporal information,
but also meet the requirements of rapid response of the diagnostic model.

3.3  Case Studies and Experimental Results Analysis

When training the model using the time window transformed data, it should be noted
that the data were not entered in time series order. This is due to the particularity of
the TEP data set. Compared with the satellite subsystem data set, the fault
representation mode of the TEP data set is more complex, and the vibration is obvious
when the fault occurs, as shown in Figure 4. In addition, TEP data sets have long
failure periods and relatively few data points. Therefore, in the actual process of data
acquisition, we adopted a ratio of 7:2:1 for random data acquisition for experimental
verification.
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Fig. 4. TEP fault mode.

Case 1: Classification based on global fault mode. Accuracy, precision, recall and
F1 score are selected as our evaluation indicators, and the experimental results are
shown in Figure 5. Transformer, GRU [25], DGM? — O [26], and MTGNN [27] are
selected for comparison. In the four data sets, our model achieves the optimal results
in most indicators. Especially in the TEP data set, our model significantly
outperforms other models, with an accuracy increase of 12 percentage points
compared to the strongest comparison model Transformer, and the accuracy has
increased from 40.7% to 93.8% with a surge of 130% compared to the DGM? — O
model. This significant improvement further confirms the excellent diagnostic
performance of our model in the face of small sample sizes and complex failure
modes. In the satellite subsystem datasets, although the comparison models has
improved its performance compared to the TEP data set, the performance gap is still
significant compared to our model. In PSD and LPS datasets, our model continues to
lead the way. In the AOCS data set, the Transformer model is only 1 percentage point
more accurate than our model. The explanation for this difference is that compared
with the fault data in the TEP data set, the fault mode of the satellite subsystem is
relatively simple, which enables the comparison model to achieve better performance
in the training process, resulting in different performance trends in the two data sets.
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Fig. 5. Performance of the improved model and the comparison models across different metrics
based on four datasets.
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Table 2. Performance of the improved model and the comparison models across different
metrics based on four datasets.

TEP PSD

Methods
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Transformer | g1g+70  83.7+1.6  81.8+2.0  823%19 | 85015  85.0%1.6  845%L5  84.4%13

GRU 50.745.5 53.547.0 542445  511£57 | 79.0439 804429  79.8+34  79.3%38
-0 40.7+5.0 385467 407450 377457 | 588+63  60.7457  587%59  57.8%5.6
MTGNN 62.6+4.4 65.544.0  62.6£44  63.1x42 | 659424  67.1434  662+25  65.9%2.7
GATCN-
93.8+1.9  94.9+15  93.7+19  93.8+1.9 | 91.6*19 921420 9L5x2.1  91.4%2.0
Transformer
Methods LPS AOCS

Transformer 81.5+1.2 75.4+0.5 80.3+0.7 76.4%0.7 97.0£1.0 96.2+1.4 95.6+1.4 95.7£1.5

GRU 773438 71443.6 765434  76.8+3.5 | 93.8+0.7  91.5%£0.6  90.9+04  89.9+13
-0 74.4+43 69.0+4.9  738+28  68.8%42 | 893443 889449  863%48  86.4%52
MTGNN 70.4%3.7 684429 712425  66.3%3.1 924424 931221 914424 918424
GATCN-
82.6+0.8 763403  80.8+0.7 77107 | 96.0%12  951%15  942+1.8  942+18
Transformer

Case 2: Classification based on different fault types. According to the actual
situation, the fault types of all data sets are subdivided into abrupt faults and slowly-
varying faults to evaluate the diagnostic efficiency of the model for different fault
types. The experimental results show that our model shows high diagnostic
performance for both fault types on most datasets. Especially in the case of more
complex failure modes, our model still maintains a significant advantage over the
comparison model, and in the TEP data set, our model has an accuracy advantage of
2.5 percentage points compared to the strongest comparison model Transformer. In
AOCS data sets with relatively simple failure modes, our model performs equally
with the comparison model on various indices. When comparing the diagnostic
performance of abrupt faults and slowly-varying faults, we find that the overall
performance of abrupt faults is more stable and robust. The explanation of this
phenomenon is that the characteristics of abrupt faults change significantly and
rapidly in a very short period of time, while the time sensitivity of slow faults is low,
and there is a large time delay between the occurrence of faults and the change of
fault mode, resulting in the overall performance of slow faults showing greater
volatility than that of abrupt faults. Despite these challenges, our model has the best
overall performance on both fault types. This result highlights the validity and
reliability of our model in dealing with the dynamic characteristics of different faults.
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Table 3. The experimental results for slowly-varying faults and abrupt faults in the TEP.

TEP(abrupt faults) TEP(slowly-varying faults)

Methods
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
Transformer 94.7x1.5 95.1%1.3 94.7x1.5 94.6x1.6 87.5+4.4 89.1+3.8 87.5+4.4 87.2+4.6
GRU 76.2+5.3 73.3%£6.9 75.1£5.6 72.8+6.6 36.8+3.7 32.8+5.2 35.9+2.7 29.0£2.7
-0 55.5+4.7 56.3+6.5 55.5+4.7 53.2+4.9 40.0+6.8 42.7%5.6 40.0+6.8 39.5%6.5
MTGNN 78.3%6.1 81.2%+6.5 78.3%6.1 77.7%6.0 63.0+8.5 68.4%7.1 63.0+8.5 62.8%9.1

GATCN-
97.2%+1.1 97.6+1.0  97.2*1.1 97.2+1.2 91.8+4.2 92.7+3.9 91.8+4.2 91.7+4.3

Transformer

Table 4. The experimental results for slowly-varying

faults and abrupt faults in the PSD.

PSD(abrupt faults) PSD(slowly-varying faults)

Methods
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
Transformer 90.8+2.8 90.7£2.5 90.1%2.5 90.1%2.6 93.7%1.6 93.6x1.7 93.7%1.8 93.6x1.7
GRU 855423 86.0+2.4 85.6+2.2 853+2.3 91.8+1.2 91.2+1.7 91.2+1.8 91.0%1.5
-0 70.5%8.4 71.3%8.5 71.0%8.0 69.629.0 82.6x4.5 83.8+4.7 82.2+4.7 81.8+4.9
MTGNN 66.7x7.7 68.0£7.6 67.5£7.4 66.6x7.7 72,9493 73.5%£9.9 72.5%£9.2 71.7£9.7

GATCN-
94.0+2.1 94.4+1.8  93.9+2.0 939+ .1 94.6+1.8 94.7x1.7  94.4%2.0 94.3x1.9

Transformer

Table 5. The experimental results for slowly-varying faults and abrupt faults in the LPS.

LPS(abrupt faults)

LPS(slowly-varying faults)

Methods
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
Transformer 92.1%1.2 89.6+4.2  88.8+1.6  85.5+2.9 | 58.0+2.8  55.0+4.0  58.0+2.6  53.3+43
GRU 88.5+4.2 79.142.9  79.1%2.9  80.3%4.1 | 46.1%42 349436  47.5%33  37.5%3.7
-0 77.242.8 62.943.4  74.6%3.5  66.3%3.6 | 37.5%3.7 31121  423%3.1  323%2.6
MTGNN 89.6%5.9 90.5+7.0  89.6+£5.0  87.626.6 | 50.2+4.4 46472  52.0%3.9  44.0%5.5

GATCN-
94.0+1.8 94.2+1.5  94.4+1.5  942+1.6 | 62.3+2.1  53.1%47 61717 56.0% .1

Transformer

Table 6. The experimental results for slowly-varying faults and abrupt faults in the AOCS.

AOCS(abrupt faults) AOCS(slowly-varying faults)
Methods
Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score
Transformer 94.7%1.6 947419 945+ 7 945%L7 | 99.9+03  99.8+0.5  99.8+0.5  99.7+0.5
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GRU 87.6%2.1 86.6£2.5  85.4+3.0  854%2.6 | 98.3%27  98.5422  98.9%27  98.2%2.7
-0 91.4%1.8 91.0£2.3 90321  90.0%22 | 98.6%25  99.1%1.5  98.9%2.0  98.9%+2.0
MTGNN 92.7+3.8 926448  91.6448 917448 | 99.8%0.5  99.740.8  99.6%0.9  99.60.9
GATCN-
94.6+1.2 952+1.1  944+13  942%15 | 99.8+04  99.8+0.5  99.7+0.6  99.7+0.5
Transformer

Case 3: Performance comparison of the improved model and the comparison
model with different sample sizes. In order to discuss the impact of data set size on
different models, the fault samples were expanded on TEP data set using the data
augmentation method [28], and the effects of the model under different data samples
were discussed, as shown in Table 7 and Figure 6. It can be seen that the data sample
size improves the performance of different models to different degrees. When the data
set size reaches 1,500, the effect improvement of these models is no longer obvious.
The diagnostic accuracy of our model in TEP data set without data expansion is
93.8%. For Transformer, our model's performance can be approached when the data
sample size is doubled. However, for other comparison models, when the number of
data samples reaches 1,500, the improvement in model performance almost stops, and
the diagnostic accuracy is much lower than our model. It can be inferred that our
model still has a good diagnostic accuracy even in the case of small samples, which is
highly advantageous in practical application scenarios and can make up for the
defects of small samples of fault data in actual production operations.The improved
model shows significant potential for application in small-sample complex industrial
systems. The model has a relatively high time complexity of O(m % n), where m
represents the node features selected during graph network construction, and »
represents the total node features. The hardware requirements are not very high, with
6GB of GPU memory, single card, and a runtime of under 2 hours for 30 epochs. The
larger the parameter dimensions, the longer the time required. Detailed information
about the dataset is provided in Table 1.
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Table 7. Experimental results of the model after data augmentation.

Sample size TEP Accuracy Precision Recall F1 score
Transformer 86.3%3.2 87.6%3.0 86.3+3.2 86.2+3.1

GRU 48.912.8 48.8+4.6 48.6+4.5 46.1£3.0

200 DGM?-0 42.8+4.9 43.0+6.4 42.8+4.9 40.7£5.5
MTGNN 61.2+3.6 62.9%3.5 61.243.6 60.9%3.6

Transformer 87.3%3.3 88.3+3.3 87.3%3.3 87.2+3.3

GRU 53.9%2.9 542427 53.4%2.5 50.8+2.3

1000 DGM?-0 45.0%5.3 44.4%7.0 45.0%5.3 42.2%6.5
MTGNN 64.9%3.9 66.8%3.5 64.9%3.9 64.7%3.5

Transformer 91.7£2.7 92.3%2.7 91.7%2.7 91.0%2.9

GRU 57.6%3.2 56.0£6.4 56.6%5.1 53.9%5.9

1o DGM2-0 472453 46.2x7.7 47.2%53 44.8+6.3
MTGNN 66.6%7.6 68.4%8.0 66.627.6 66.3%7.7

Transformer 90.5+3.3 91.5£2.8 90.5+3.3 90.6+3.3

GRU 59.6%5.0 61.8+7.0 59.8+6.2 58.9%6.4

1200 DGM2-0 46.7x4.4 47.1%4.6 46.7x4.4 44.3x4.7
MTGNN 69.5+8.6 72.7£7.9 69.5%8.6 69.6+8.3

Transformer 90.6+4.1 91.4+3.8 90.6%4.1 90.6+4.0

GRU 63.8+2.4 62.8+2.9 61.922.0 60.2%2.7

1300 DGM2-0 48.1%£5.3 49.7+4.6 48.1%5.3 45.8%5.5
MTGNN 69.5%3.3 72.5%3.3 69.5%3.3 69.7%3.3

Transformer 92.2+2.1 92.8%2.1 922421 92.1%£2.2

GRU 64.942.2 66.1+4.2 65.0%1.4 63.8+2.1

1400 DGM2-0 51.8%5.5 53.1%6.8 51.8%5.5 50.4+6.1
MTGNN 76.6+4.3 78.4%4.4 76.6+4.3 76.7+4.3

Transformer 92.4%2.0 93.1%1.9 92.4%2.0 92.4%2.0

GRU 63.8+2.4 64.8%+1.0 64.1%1.5 62.9%1.5

1500 DGM2-0 51.1%5.9 52.0%7.0 51.1%5.9 49.3+6.7
MTGNN 75.9+3.9 78.3%2.6 75.9%3.9 76.0%3.6

Transformer 93.6%2.8 94.1%2.7 93.6+2.8 93.6%2.8

GRU 64.8+2.2 65.6%2.2 63.5%1.2 62.4%1.9

1600 DGM2-0 52.5+6.8 52.2%7.6 52.5+6.8 50.5+7.8
MTGNN 76.0+5.7 78.0+4.9 76.0%5.7 76.4%5.5

Transformer 93.1%+1.8 93.7%1.7 93.1%1.8 93.1%1.8

GRU 64.8+2.4 66.3%3.7 64.412.8 63.4%2.8

1700 DGM2-0 55.3%6.8 57.1%8.0 55.3%6.8 53.6x7.4
MTGNN 75.9%5.3 78.2%5.4 75.9%5.3 76.2%5.2

Transformer 93.4%3.9 94.0£3.5 93.4+3.9 93.4+3.9

GRU 63.2+3.4 64.5%3.0 62.7+3.4 62.2+3.9

1800 DGM2-0 55.246.2 56.8%5.9 55.246.2 53.8+6.4
MTGNN 75.3%6.0 77.1+4.8 75.3%6.0 75.5%5.7

1900 Transformer 93.942.3 94.6x2.1 93.942.3 93.9%2.3

GRU 64.7£3.0 65.2+2.3 64.8+2.0 63.5+2.0
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DGM2-0 54.6+7.1 55.7+8.1 54.6+7.1 52.748.2

MTGNN 78.9+4.1 80.1£3.5 78.9+4.1 79.0:£4.0

Transformer 93.6+2.3 94.142.1 93.6+2.3 93.6+2.2

GRU 62.6+2.2 64.0+2.4 61.7%1.5 61.242.0

2000 DGM2-0 554+78 57.0+8.0 55.4+7.8 54.1%8.7
MTGNN 80.2:5.8 81.05.3 80.2:5.8 80.3£5.6

4 Conclusion

Aiming to address the problem of small sample fault classification, we propose a
classification method based on GATCN-Transformer. The model structure consists of
three parts, which are spatial feature extraction layer based on Graph Attention
Convolutional Neural Network, temporal feature extraction layer based on
Transformer and fault classification layer based on Softmax.

The datasets for the model experiments include the TEP data set and data from
three satellite subsystems. The TEP data set is characterized by a small number of
fault samples and complex fault patterns, making it a typical small-sample, high-
dimensional, and high-complexity data sets in chemical systems. Experimental data
from Case 1 show that the improved model's accuracy on the TEP data set has
significantly increased (from 40.7% in the worst case for the comparison model to
93.8%), demonstrating the model's robustness in handling small sample data.
Furthermore, experimental data from Case 2 indicate that the improved model
consistently performs optimally on all datasets, including but not limited to the TEP
data set, for both abrupt and gradual faults. This capability suggests that the model
does not rely on large amounts of data to make accurate predictions but can
effectively learn from limited samples, which is particularly important in data-
constrained applications. The satellite subsystem datasets are characterized by high
dimensionality and numerous simulated variables. Analysis of the given results shows
that the improved model consistently achieves optimal performance in most cases. In
the AOCS data set, while the transformer achieved the best performance, the
performance difference between it and the improved model is within one percentage
point, showing excellent results. This difference indicates that, although the improved
model excels in more complex fault scenarios, it also adapts effectively to simpler
fault situations, highlighting its robustness and stability, and further demonstrating the
model's strong generalization capability. Through discussion and analysis, the data
expansion method based on auto-regressive generative adversarial network is used to
conduct controlled experiments under different sample sizes, and the advantages of
GATCN-Transformer in handling small sample fault data are verified. The
conclusions are as follows.

(1) Under complex fault conditions, Graph Attention Convolutional Neural
Network can effectively extract the spatial correlation between different parameters,
and two-stage learning combined with the Transformer model can effectively improve
the model's diagnostic performance in small samples and complex fault modes.



14 Rongzhen Lei, Fan Yang and Yanhui Ren

(2) The model in this paper can achieve higher diagnostic accuracy in different
datasets, because it can better learn the spatial features between fault parameters in
different datasets. Compared with the comparison models, the combination of
temporal features and spatial features can better match the fault mode.

(3) After transforming the original data through the time window, our fault
classification method is more inclined to pattern matching, and compared to
traditional fault classification models, our fault classification method is more efficient
and has a lower error detection rate.

(4) Graph Neural Network requires greater memory and time consumption
during model training and the construction of parameter space features. In the future,
we consider introducing transfer learning to speed up model training.
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