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Abstract: In order to improve the accuracy of instance segmentation of wool
and cashmere fiber, this paper proposed an automatic instance segmentation
fiber detection model STC-Mask RCNN based on Mask Region Convolutional
Neural Network. Firstly, Swin Transformer is used as the backbone network of
the model to improve the feature extraction ability of the model; then, the
Convolutional Block Attention Module is introduced into the mask branch to
guide the model to focus on the learning channel and spatial dimension; Finally,
the ReLu activation function in the detection head and RPN network structure is
replaced with the Mish activation function to improve the accuracy of the
model. The experimental results show that:The AP value of STC-Mask RCNN
is 89.4%, which is 2.1 percentage points higher than that of the baseline model
Mask RCNN; Compared with the one-stage SOLOv2 and YOLACT models,
the AP value is also improved, which proves that the STC-Mask RCNN model

can improve the accuracy of wool and cashmere fiber instance segmentation.
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1 Introduction

Cashmere fiber is slender and uniform, soft and plush, good surface gloss, known as
the "king of fiber" and "soft gold", due to the rare production and high price[1]. Wool
and cashmere are very similar in shape characteristics, physical and chemical
properties, composition, but the price gap between them is wide. In the interest of
driving, many delinquent businesses to cashmere fiber into the value of relatively low
wool, shoddily good, adulterated, false standard cashmere and wool content ratio to
pursue tremendous profits. Therefore, it is necessary to study the quantitative
identification of cashmere and wool in related products.

At present, the quantitative identification methods of cashmere and wool in China
mainly include: microscopic projection method, DNA identification method, staining
identification method, near infrared spectroscopy, scanning electron microscopy,
etc[2-6]. The microscopic projection method is currently the most widely used in
third-party institutions, but the accuracy of this method is closely related to the
experience of inspectors.

Since the rise of Convolutional Neural Network(CNN)[7] in 2012, researchers
have begun to apply CNN to the field of image segmentation. CNN can be trained to
automatically extract the feature information in the image, replacing the complicated
process of extracting the feature information manually. Girshick et al.[8] proposed
RCNN (Regions with CNN), which uses the strategy of RPN to train the model to
realize object localization and image segmentation. The Mask RCNN network
constructed by He et al.[9] significantly enhances the accuracy of image instance
segmentation. With the development of machine learning, more and more researchers
have applied deep learning methods to the detection and instance segmentation tasks
of wool and cashmere images. Cong Mingfang et al.[10] tried to use Mask RCNN
algorithm to realize instance segmentation of wool and cashmere microscopic images.
Therefore, this paper improves Mask RCNN to achieve better instance segmentation

effect of wool and cashmere.

2 Mask RCNN algorithm

Mask RCNN is a two-stage algorithm capable of performing multiple tasks, including
target classification, detection, and instance segmentation. It extends the Faster

RCNNJ[11] framework by incorporating a branch composed of fully convolutional



neural networks to predict target masks. This mask branch is utilized to perform
instance segmentation on the regions of interest provided by the RCNN network,
enabling simultaneous completion of tasks such as target classification, localization,
and segmentation. The network structure of Mask RCNN model is shown in Fig. 1.
The structure of the model is simple, and only a small amount of calculation is added
to realize the detection of image objects and generate a high-quality mask for each

object.
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Fig. 1. Mask RCNN network structure

Mask RCNN is a two-stage network structure. In the initial stage: the image is first
fed into the backbone network for feature extraction;furthermore, the feature
pyramid's hierarchical and lateral structure is leveraged to integrate image features
across multiple scales, enabling the incorporation of semantic and positional
information at varying scales; then, a predetermined number of anchor boxes are
generated for each pixel on the feature map provided for the FPN structure. The
intersection between each anchor box and the actual box marked on the image is then
calculated to derive multiple candidate regions of interest (ROI) with varying sizes;
The regional proposal network (RPN) is ultimately utilized to execute binary
classification and boundary regression operations on the candidate ROL
Subsequently, ROIs with low classification scores are pruned, while maintaining a
positive-to-negative sample ratio of 1:3. This approach effectively mitigates the
impact of category imbalance on network accuracy and reduces unnecessary
computational overhead in the second stage. The second phase commences with the
implementation of two alignment operations: (1) Realign the ROI provided in the
initial stage and map the spatial coordinates of the ROI in the original image to the

corresponding pixels in the feature map; (2) Convert the ROI of different sizes on the



feature map into a fixed size. Additionally, in order to minimize the error caused by
quantization during the alignment process, the bilinear interpolation method is utilized
to calculate the value of each pixel from adjacent grid points on the feature map. This
enables extraction of essential feature information within ROI and facilitates accurate
completion of classification, regression, and segmentation tasks. Ultimately, an
additional segmentation branch is integrated into the fully connected layer to execute
classification and regression on the pixels within each Region of Interest (ROI),

thereby producing a mask for each individual object.

3 Improve Mask RCNN algorithm

3.1 Introducing the Swin Transformer for feature extraction network

Mask RCNN is an instance segmentation network based on convolutional neural
network implementation. Nevertheless, CNN networks commonly experience the
following challenges : (1) Due to the limitation of receptive field, the network lacks
the coherent connection between features in the high-level semantic information. (2)
The performance of the instance segmentation mask and the inference speed of the
network are heavily reliant on the object detector, leading to poor network
performance in complex scenes. To address the aforementioned issues, this paper
employs Swin Transformer[12] as the feature extraction network for Mask RCNN in
order to enhance the backbone network's capacity to incorporate non-local
information and capture global semantic features from high-dimensional image data.
Based on the number of heads in the multi-head attention module, the Swin
Transformer model is categorized into four structures: Swin-T, Swin-S, Swin-B, and
Swin-L. Compared with other Swin Transformer models, Swin-T can use fewer
parameters to achieve the same accuracy. Therefore, this paper conducts experimental
research based on Swin-T. The network architecture of Swin-T consists primarily of
four components: patch partition layer, linear embedding layer, Swin Transformer
Block, and Patch Merging layer. The overall structure is illustrated in Fig. 2. During
the process of model training, the image undergoes initial processing by the patch
partition layer to partition and flatten it. Subsequently, the flattened feature map is
subjected to linear transformation in the linear embedding layer to handle channel

data for each pixel. The resulting transformed data then enters the Swin Transformer



Block for attention calculation. Finally, after three iterations of patch merging layers

and Swin Transformer Block stacks, the computed feature map is generated.
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Fig. 2. Swin-T network structure

The patch partition layer primarily conducts down-sampling processing on the input
feature image, as illustrated in Fig. 3. Initially, each 2x2 adjacent pixels of the input
feature map are partitioned into a patch, and the pixels at corresponding positions
within each patch are extracted and concatenated along the depth dimension.
Subsequently, the concatenated feature map is normalized using LayerNorm layer.
Finally, the normalized result is fed into the fully connected layer for linear
transformation along the depth dimension to obtain the ultimate output. The width and
height of the resulting feature map are halved compared to the input feature map,
while the depth is doubled.
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Fig. 3. Schematic diagram of the patch partition layer

The Swin Transformer Block consists primarily of LayerNorm (LN), windows
multi-head self-attention (W-MSA), shifted windows multi-head self-attention
(SW-MSA), and multilayer perceptron (MLP). The specific structure is illustrated in
Fig. 4.

.



Fig. 4. Swin Transformer Block

The LayerNorm is responsible for normalizing the feature map of the input network;
W-MSA conducts self-attention operations within each non-overlapping window. In
comparison to MSA, it significantly reduces the computational load of the model, but
the information transmission between windows is constrained. SW-MSA builds upon
W-MSA by introducing shifted window and subsequently performing block
processing. The window offset after block processing is recombined with the original
W-MSA window shape, followed by attention mechanism operation within a single
window. This approach addresses the challenge of information exchange between
different Windows, and their integration can significantly enhance the model's feature
extraction capability. The computational complexity of MAS and W-MSA can be

determined using the following calculations:
( Y=4h 2+2(h )? D
( - Y=4h 2+2 ?p 2)

Where  denotes the computational complexity, # signifies the height of the feature
map, represents the width of the feature map,  indicates the depth of the feature
map, and stands for the size of each window.

The calculation principle diagram of W-MSA and SW-MSA is shown in Fig. 5.
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Fig. 5. Window multi-head self-attention module and shift window multi-head self-attention

module

The self-attention mechanism is an important part of Swin Transformer Block, and its
schematic diagram is shown in Fig. 6. Firstly, the input feature map undergoes linear
transformation to convert it into two-dimensional sequence data. Subsequently, the
Query array (Q), Key array (K), and Value array (V) are generated, followed by the
addition of position encoding to capture positional information within the
two-dimensional sequence. The Q, K, and V are then processed through the scaled dot
product attention mechanism, and the resulting outputs are concatenated before being
fed into a fully connected layer to obtain the final result as depicted in the following

formula:
(., » )= (f) (3)

Where dis the input dimension of the model; Q. K. V respectively is the linear
transformation value of the feature map.
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The multilayer perceptron partitions the input feature map based on category
information, and its structural diagram is illustrated in Fig. 7. The multilayer
perceptron is primarily composed of two fully connected layers, an activation
function layer, and two dropout layers. Among these components, the Gaussian Error
Linear Unit (GELU) serves as the primary activation function. In comparison to other
activation functions, GELU enhances model integrity and accuracy while ensuring
training stability. Dropout can prevent overfitting by randomly losing a subset of

neurons.
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Fig. 7. Multilayer perceptron structure

3.2 Introduce the Convolutional Block Attention Module

In recent years, the attention mechanism has been widely employed in tasks such as
image recognition and object detection[13-14]. Only a marginal increase in
computational load is required to integrate this mechanism into the original network
model, enabling automatic focus on pixel-rich areas during the training process. Mask
RCNN incorporates a Fully Convolutional Network (FCN) to perform pixel-wise
instance segmentation of the target within the candidate region. Due to the rough edge
of wool fiber and the relatively smooth nature of cashmere fiber, FCN is unable to
capture sufficient edge information from the cashmere fiber. Hence, a Convolutional
Block Attention Module(CBAM) is incorporated into the Mask branch of the Mask
RCNN network to direct the model's attention towards learning channel and spatial
dimension dependencies.

The Convolutional Block Attention Module consists primarily of a Channel
Attention Module and a Spatial Attention Module, as illustrated in Fig. 8. The
attention mechanism is incorporated into the Mask RCNN network to enable the
model to focus on pixels containing rich content, specifically those representing wool
and cashmere. This effectively suppresses image noise and ultimately enhances the
accuracy of segmenting wool and cashmere masks. The enhanced segmentation
branch is delineated into four sequential steps, as depicted in Fig. 8 : (1) The 14x14
region of interest (ROI) obtained in the initial stage was fed into four convolutional

RW><H><C

layers with 3x3 convolution kernels to generate the feature map X, X ,where

W.H.C denote the width, height, and channel number of the feature map respectively.



(2) The feature map X is input into the CAM module to amplify the model's focus on
salient features within the channel, and the output channel directs attention to the
feature map ; (3) The input is fed into the SAM module to augment the
model's attention towards significant features, and the resulting attention feature

is guided in the output space; (4) The transposed convolution layer, equipped with a 2
x2 convolution kernel, is employed to upsample to 28%28. Subsequently, the 1
x1 convolution layer is utilized for pixel-wise category prediction on the feature map
in order to derive the final wool and cashmere mask map. Fig. 9 illustrates the
configuration of CAM and SAM.
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Fig. 8. Improved Mask RCNN segmentation branch

Within the CAM module, two channel descriptors and are derived from
the feature map X through parallel max pooling layers and global average pooling
layers. Subsequently, these descriptors and undergo element-wise
summation via a shared Multilayer Perceptron (MLP) before being input into the
sigmoid activation function to yield the weight coefficient ( ), ()=
( ( )+ ( )), where o represents the sigmoid activation function.
Finally, this obtained weight coefficient () is utilized to perform element-wise
multiplication with the feature map in order to obtain the channel-guided attention
feature map , = » Where stands for element-wise multiplication.
Initially, the SAM module conducts average-pooling and max-pooling operations
on the channel-guided attention feature map across their respective channels to
obtain pooled feature maps S . Subsequently, the corresponding elements of
and are added together and cascaded into the 3 x3 convolutional layer,
followed by application of the sigmoid activation function to derive weight
coefficients (), ()= ( 3x3( 0 )), Where 3.3 represents the 3



x3 convolutional layer, represents the cascade operation, and finally obtains the

spatial attention guided feature map , = ()
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Fig. 9. CAM and SAM structure diagram

3.3  The optimization of activation functions.

The utilization of diverse activation functions enables a more effective capture of the
non-linear relationships within the network, thereby enhancing the model's expressive
capacity for complex data. This study replaces the detection head of Mask RCNN and
the ReLu activation function in the RPN network structure with Mish[15], an
alternative activation function that exhibited superior performance. The functional

expression is as follows:
= ( @+ ) €))

The comparison of activation function curves is depicted in Fig. 10. In contrast to the
Relu activation function, the Mish activation function demonstrates a higher degree of
smoothness and exhibits continuous derivatives across both positive and negative
intervals, thereby enhancing its ability to capture nuanced variations in input data.
Furthermore, the Mish activation function yields non-zero gradients within the
negative value region, effectively mitigating issues related to vanishing gradients
during training. This characteristic facilitates improved feature extraction and

contributes to enhanced training efficiency and model performance.
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4 Experimental results and analysis

4.1 Experimental environment deployment and Parameter setting

The experimental operating system is Windows 10, and the development environment
for the deep learning framework utilizes Python 3.9, CUDA 11.3, and PyTorch
1.10.1. The training process is carried out on an NVIDIA GeForce RTX 3080 Ti
graphics card with a video memory of 12GB. The hyperparameters employed for
training are detailed in Table 1.In this experiment, the initial learning rate is set to
0.0002, the batch size is set to 4, and the number of iterations per round is 3000.

4.2  Experimental data set preparation

The experimental dataset utilized in this study comprises 3125 images of various
microfibers of wool and cashmere blend, sourced from the Ningbo Fiber Inspection
Institute. Initially, Labelme is employed for annotating the dataset, utilizing a series of
anchors to create polygons outlining the target fibers depicting wool and cashmere.
Subsequently, labels for cashmere and wool are added to the annotated data, which is
then saved in json format.

The dataset is partitioned randomly into training, validation, and test sets in a 7:2:1
ratio. The specific number of fibers in each set is detailed in Table 1.

Table 1. Fiber data statistics of the wool cashmere dataset

Mixed image wool cashmere
training set 2188 3776 3281
validation 625 1135 957
test 312 612 473

Total 3125 5523 4648




4.3 Evaluation index

The instance segmentation algorithm primarily aims to segment distinct object
instances of interest, fundamentally addressing the challenge of pixel classification
and recognition. This study adopts average precision (AP) and mean average
precision (mAP) as the evaluation metrics for assessing the wool and cashmere
instance segmentation model.

4.4  Model training

Referring to the transfer learning method, the Swin Transformer backbone network is
initialized by using the weights of the Swin Transformer model trained on the large
dataset ImagNet during training, so that the parameters of the feature extraction
network are relatively optimal and the model is avoided overfitting. Then, the Swin
Transformer is fine-tuned on the data together with other structures to finally realize
the instance segmentation of wool and cashmere.

4.5  Experimental results and analysis

Ablation experiments.To assess the impact of the newly introduced Swin-T model
on network performance, various backbone network models are compared. This study
selects ResNet50 and ResNetlO1 as the control group for the backbone network
model based on the overall structure of the model. ResNet50 and ResNetl101 consist
of multiple convolution modules and residual modules, commonly utilized as
backbones for Mask RCNN networks. Ablation experiments are conducted to verify
the effect of integrating CBAM attention mechanism into the mask branch and
replacing the Mish activation function on model performance, using Swin-T as the

backbone network. The specific experimental results are presented in Table 2.

Table 2 Results of ablation experiments

Backbone ) 1%
CBAM Mish /%
network Wool cashmere
ResNet50 X X 89.2 85.4 87.3
ResNet101 X X 89.7 86.5 88.1
Swin-T x X 89.9 86.7 88.3
Swin-T \ x 90.6 87.7 89.2

Swin-T N \ 90.8 87.9 89.4




Note: x indicates that the factor is not included, and ' indicates that the factor is
included. All AP values in the table are computed at IOU=0.5, and denotes
the mean average precision across all classes at [OU=0.5.

The data in the table demonstrates that utilizing Swin-T as the backbone model of
the network leads to a significant enhancement in instance segmentation accuracy
compared to using ResNet50 and ResNet101. Specifically, there is an increase of
1.6% and 0.2% in AP value for the model, and a respective increase of 0.7% and
0.2% for wool, as well as a rise of 1.3% and 0.2% for cashmere when Swin-T is
employed as the backbone network. Furthermore, integrating CBAM into the mask
branch results in a notable improvement with a 0.9% increase in AP value for
cashmere and wool due to enhanced attention on learning space and channel attention,
leading to more accurate prediction of mask edges for cashmere and wool instances.
Additionally, replacing the Mish activation function enhances the model's AP value
by 0.2%. These experiments collectively validate the effectiveness of our improved

model.

Model comparison experiment.The STC-Mask RCNN model is contrasted with the
instance segmentation models namely Mask RCNN, SOLOv2, and YOLACT. Mask
RCNN, SOLOvV2, and YOLACT all enlist ResNet50 as the backbone network.
Additionally, all models assimilate the identical experimental milieu and training

tactics as those in this investigation, and the experimental yields are depicted in Table
3

Table 3. Comparative experimental results of different instance segmentation models

Model /% 1%
wool cashmere
SOLOv2 88.5 83.7 86.1
YOLACT 86.7 82.5 84.6
Mask RCNN 89.2 85.4 87.3
STC-Mask RCNN 90.8 87.9 89.4

From the data presented in the table, it is evident that the value of STC-Mask RCNN
is 2.1 percentage points higher than that of the baseline model Mask RCNN.
Specifically, the AP value of wool has increased by 2.5 percentage points, and that of
cashmere has risen by 1.6 percentage points. In comparison with the SOLOv2 and

YOLACT models, the accuracy has improved by 3.4 and 4.8 percentage points



respectively, thereby demonstrating the effectiveness of the improved model in this
paper.

To further validate the efficacy of the STC-Mask RCNN model in enhancing the
segmentation accuracy of wool and cashmere fiber instances, this paper randomly
selected one image from each validation set for comparative analysis. Fig.11 presents
the prediction results without crossed fibers. In contrast to the baseline model
Mask-RCNN, the STC-Mask RCNN model can not only elevate the prediction score
of the model, but also enhance the quality of the Mask, particularly improving the
mask segmentation quality of the edges of wool and cashmere fibers.

(a) Original image (b) Mask RCNN (c) STC-Mask RCNN

Fig. 11. Effect of easily detected image prediction

Mixed fiber images of wool and cashmere frequently overlap, presenting a relatively
high level of difficulty in detection. Such images are selected in the validation set for

prediction and comparison, and the comparison results are presented in Fig. 12.

(a) Original image (b) MasKk RCNN (c) STC-Mask RCNN

Fig. 12. Prediction effect of hard-to-detect images

From the predicted figure, it can be observed that when the baseline model Mask
RCNN is employed to predict the cross fibers of wool and cashmere the category
prediction at the fiber intersection is indistinct, and the instance segmentation
accuracy of the model at the edge of the fibers is not high. STC-Mask RCNN
ameliorates the above two circumstances exceedingly well and generates a pixel-level

mask for the cross fibers.



5 Conclusion

In response to the issue of low accuracy in wool and cashmere instance segmentation,
this study presents an automated fiber recognition model for instance segmentation,
named STC-Mask RCNN, based on Mask Region Convolutional Neural Network .
This paper primarily enhances the model in the following aspects: (1) incorporating
Swin Transformer as the backbone network to enhance feature extraction capability;
(2) introducing Convolutional Block Attention Module into the mask branch to guide
the model's focus on learning channel and spatial dimension; (3) replacing ReLu
activation function in detection head and RPN network structure with Mish activation
function to improve model accuracy.

The experimental results on the wool and cashmere dataset demonstrate that
employing Swin Transformer as the backbone network of the model leads to a 1%
increase in the AP value. Furthermore, integrating the Convolutional Block Attention
Module into the mask branch results in a 0.9% improvement in AP value, and the AP
value of the STC-Mask RCNN model has witnessed an augmentation of 2.1%.
Compared with other models, our proposed model achieves superior accuracy and
significantly enhances wool and cashmere instance segmentation precision.

The STC-Mask RCNN model is utilized for precise instance segmentation of wool
and cashmere, generating corresponding mask images. While it can accurately detect
the quantity of wool and cashmere fibers, specific parameters such as fiber diameter
have not been investigated. In future research, the acquired mask image is employed
to automatically measure the fiber diameter, thereby providing a reference for the

measurement of the fiber diameter of wool and cashmere fibers.
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