
Multi-objective evolutionary algorithm based
graph neural network architecture search ⋆

Lianyi He1,2,3, Xiaobo Liu1,2,3,4 ⋆⋆, Hongbo Xiang1,2,3, and Guangjun
Wang1,2,3

1 School of Automation, China University of Geosciences, Wuhan 430074
2 Hubei Key Laboratory of Advanced Control and Intelligent Automation for

Complex Systems, Wuhan 430074
3 Engineering Research Center of Intelligent Technology for Geo-Exploration,

Ministry of Education, Wuhan 430074
4 Key Laboratory of Geological Survey and Evaluation of Ministry of Education,

China University of Geosciences, Wuhan 430074
{helianyi,xbliu,hbxiang,gjwang}@cug.edu.cn

Abstract. Graph Neural Networks (GNN) has become a powerful graph
data processing method, which has been widely used in node classifica-
tion, link prediction, and other graph analysis tasks. Due to the diver-
sity and complexity of graph structures and information propagation, as
well as the handling of heterogeneous graphs, etc., the design of GNNs
presents many challenges. The existing methods have high classification
accuracy, but their structures are very complex. In this paper, a graph
neural network architecture search framework named MO-GNN, which
is based on multi-objective evolutionary algorithm is proposed. Further-
more, a weight sharing strategy MO-GNN-WS is proposed to reduce the
resource consumption caused by weight training of different architec-
tures. To verify the performance of the proposed algorithm, experiments
on four popular graph datasets are used for transduction and induction
tasks. The experimental results show that the MO-GNN-WS algorithm
outperforms the most advanced neural network architecture search meth-
ods in terms of classification accuracy and resource consumption.

Keywords: Graph neural network architecture search, Multi-objective
optimization, Weight sharing.

1 Introduction

Graph Neural Networks (GNN) is a deep learning method for graph struc-
ture data classification [1]. In recent years, many graph neural network models
⋆ Supported by National Natural Science Foundation of China (61973285, 62076226),

Hubei Provincial Natural Science Foundation of China (Grant No.2022CFB438), and
Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry
of Education (GLAB2023ZR08).

⋆⋆ Corresponding author: xbliu@cug.edu.cn

2 L. He et al.

with different neighborhood aggregation schemes have been developed, including
graph convolutional networks [2], graph isomorphic networks [3], graph attention
networks [4], and local extreme graph neural networks [5], which have achieved
good performance in tasks such as semantic segmentation [6], node classifica-
tion [7], and recommendation system [8]. Despite the great success of graph
neural networks, the design of graph neural networks is a knowledge-intensive
and labor-intensive process. Moreover, unlike most CNN models in computer
vision tasks, GNNs often show a poor transferability toward different scenarios,
and require additional manual adjustments when dealing with new tasks [9].

In order to overcome the challenge of designing neural network models by
hand, neural network architecture search has become a hot topic. Motivated
by the successful application of neural network architecture search in the field
of computer vision, there is a growing interest in searching for a robust and
well-performing graph neural network model from a predefined search space.
For example, GraphNAS [10] is the first to try to apply the neural network
architecture search method to the architecture design problem of graph neural
networks. Subsequently, Zhao et al. constructed a novel search space and pro-
posed a framework based on differentiable search, which has certain advantages
in accuracy and training efficiency compared with some state-of-the-art deep
learning methods [11]. At the same time, by using the pseudo-inverse of the ma-
trix to adjust the number of nodes and the linearization length constant of the
virtual equivalent dynamic linearization model, also provides a good scheme to
solve the neural network architecture search problem [12]. Genetic-GNN algo-
rithm [13] synchronously optimizes the structure and hyper-parameters, whose
performance of the searched model can be comparable to reinforcement learn-
ing. These automatically designed GNN architectures have achieved competi-
tive or better performances compared with manually designed GNNs for a single
task [15].

The existing graph neural network architecture search algorithms have achieved
good results in classification accuracy. However, in order to achieve better clas-
sification performance, these algorithms often introduce more parameters, led to
an augmentation in the count of model parameters. In order to overcome this
difficulty, we propose a graph neural network architecture search method based
on multi-objective optimization algorithm, named MO-GNN. The algorithm sets
the number of parameters and classification accuracy of the graph neural network
model as the objective function, and combines the super network sharing weight
strategy with the multi-objective algorithm to search the optimal graph neural
network model and improve the search efficiency of the graph neural network
architecture.

In summary, the contributions of this work are as follows:

1. In order to balance the number of parameters and classification accuracy,
an algorithm called MO-GNN is proposed to combine multi-objective opti-
mization with evolutionary algorithm to search for the optimal graph neural
network model.

Title Suppressed Due to Excessive Length 3

Fig. 1: The Overall Framework of Differential Method.

2. In order to improve the search efficiency, super network is combined with
MO-GNN method by alternately optimizing hyperparameters with the model
structure.

2 Related Works

2.1 Differential Graph Neural Architecture Search

The existing search strategies of graph neural network architecture include re-
inforcement learning and evolutionary algorithm. Reinforcement learning based
methods include GraphNAS [10], Auto-GNN [16], which is time-consuming and
inefficient. The differentiable method can search for a more expressive GNN
model quickly and efficiently [11].

Fig. 1 shows the algorithm framework of the differential graph neural ar-
chitecture search method.The training process of the differentiable algorithm is
divided into two stages. In the first stage, the gradient descent method is used
to train the network weights on the validation set of the super network, the
weight information of each connection is obtained, and the operation with the
maximum weight is used to replace the hybrid operation ōij(xi), so as to obtain
a discrete network structure parameter α. In the second stage, the training set is
used to optimize the network weight parameters under the condition of specific
α.

In detail, a predefined set of fixed candidate operations O is defined. The set
includes operation types such as node aggregation, layer aggregation, and skip
connection. In the graph neural network model, o(xi) is defined as the input
feature of node i. A directed edge (i, j) between node i and node j is associated
with the operation ōij(xi) of the edge. Thus, the hybrid operation from node i
to node j can be calculated as Equation 1:

ōij(xi) =
∑
o∈O

exp
(
αij

o

)∑
o′∈O exp

(
αij

o′

)o(xi) (1)

4 L. He et al.

where αij
o is represented as the type of operation between node i and node

j. Therefore, the discrete search space can be converted to a continuous search
space, replacing the discrete connection of the hybrid operation with ōij(xi)
based on the weight of the hybrid operation.

Thus, we can get the final representation of the output node by calculating
Equation 1 and inject it into different types of losses depending on the given task,
a two-level optimization problem can be derived in Equation 2 and Equation 3:

min
α∈A

Lval (w∗(α),α) (2)

s.t. w∗(α) = argmin
w

Ltra (w,α) (3)

where Ltra and Lval can be represented as training loss and validation loss
respectively, α and w∗(α) are represented as network architecture and the cor-
responding weights after training phase.

2.2 Multi-objective Optimization

Compared with traditional single-objective optimization, multi-objective neu-
ral network architecture search focuses on a variety of different goals, such as
model size, computational complexity, speed of operation, and interpretability, to
achieve more comprehensive performance evaluation. In general, multi-objective
neural network architecture search finds the best neural network structure by
optimizing the weighted sum of multiple objective functions. In the field of neural
network architecture search, Kim first proposed a multi-scale algorithm NEMO
involving neural networks [18], used NSGA-II algorithm to minimize the error
and inference time of the network, and searching the space of the number of out-
put channels from each layer within the limited space of 7 different architectures.
The main idea of the NSGA-II algorithm is to non-dominate sort each individual
in the population according to its fitness, and select operations according to the
sorting results to achieve the effect of multi-objective optimization [19].

Compared with the NSGA-II algorithm, MOPSO algorithm has fewer itera-
tions and can find the optimal solution more quickly. Moreover, its convergence
speed is relatively fast, and it takes a short time to converge to the optimal
solution, while avoiding the occurrence of local optimal solution and greatly re-
ducing the computational complexity in the training process.The innovation of
the MOPSO algorithm mainly has two points: one is the use of an external repos-
itory and a grid-based particle distribution method to maintain the diversity of
populations, where the external repository is storing the set of non-dominated
solutions for each iteration [17]. The other innovation is the particle updation
strategy. For multi-objective optimization problems, not only the convergence
of the solution, but also the uniformity and breadth of the solution distribution
should be considered. In order to ensure the diversity of the final solution, a new
mutation strategy is taken to mutate the area of the particle distribution, and
the mutation probability gradually decreases with the increase of evolutionary
algebra .

Title Suppressed Due to Excessive Length 5

3 Proposed Method

In this section, a multi-objective evolutionary algorithm based graph neural net-
work architecture search framework MO-GNN is proposed. In order to improve
the efficiency of the search stage and balance the performance of the model,
multi-objective evolutionary algorithm which is combined with the super net-
work is designed to search for the optimal graph neural network model.The
overall framework of the algorithm is shown in Algorithm 1 and Fig 3.

Fig. 2: Search Space Design and Particle Encode in MO-GNN Method

3.1 Search Space Construction

To build a well-performing search framework, the search space consists of three
node aggregation layers and one layer aggregation layer. The node aggregation
functions in the first three layers and the layer aggregation function in the last
layer should be searched. The skip connections between the first three layers
and the last layer also need to be selected. All candidate operations are shown
in Table 1.

Among Fig. 2, X0 and Y are represented as the input node and output node
of the graph neural network model, respectively, and X1, X2, X3, and X4 are the
four hidden nodes of the model. This network structure contains all candidate
network models, also known as all particles in PSO. For all individual particles,
the node aggregation operations, the layer aggregation operations, and the skip

6 L. He et al.

Fig. 3: The Overall Framework of MO-GNN Method

Table 1: The Operations of MO-GNN Method.
Types Operations

Node Aggregator
Geniepath, Sage, Sage-sum,

Sage-max, Gcn, Gin, Gat, Gat-sym, Gat-cos,
Gat-Linear, Gat-Generalized-Linear

Skip Connection Zero, Identity

Layer Aggregator Concat, Max, Lstm

connection operations are be decoded by corresponding indices in the array. For
example, the first, second, and third values of the particle array is represented
as the indexes of the operation types between X0 nodes and X1 nodes, X1 nodes
and X2 nodes, and X2 nodes and X3 nodes, respectively.

3.2 Search Strategy Design

In MO-GNN method, we focus on the two important indicators of the number of
parameters and the overall classification accuracy of the graph neural network
model. Since the number of model parameters and the overall classification ac-
curacy are two unsolate indicators, usually we expect to design a graph neural
network model with high overall classification accuracy and relatively small pa-
rameter quantity, how to comprehensively consider the relationship between the
two and find the better graph neural network model is a problem that needs
to be studied. Therefore, we construct a multi-objective optimization problem

Title Suppressed Due to Excessive Length 7

Algorithm 1 MO-GNN Algorithm
Input: candidate operations(OP), particle swarm(S), particle swarm size (N), number

of iterations (iter), training dataset (Tradata), validation dataset (V aldata), archive
set (A), archieve size (n), fitness (F1, F2) and architecture (α)

Output: The best GNN architecture
S = [P1......PN]← initialize the particle swarm
A = [A0......An]← archive set includes dominated solutions

while i < iter do
Optimize the improved SuperNet by gradient descent on Tradata

while j < N do
Update pBest by comparing F1(xj), F2(xj)
Update the A[i]
Update gBest by minmum crowding distance
Update the particles

end while
F1, F2, α ← Pareto solutions with balanced F1 and F2 of the architecture

during iter on V aldata
end while
return F1, F2, α

consisting of two objective functions of classification accuracy and the number
of model parameters, which can be expressed as Equation 4 and Equation 5:

F1 =
TN + TP

TP + TN + FP + FN
(4)

F2 = Co × (kw × kh × Ci + 1) (5)

Among the equation, F1 represents the overall classification accuracy of the
graph neural network model, (TP + TN) represents the correct prediction sam-
ple, (TP+ TN + FP + FN) represents all samples. F2 represents the number
of parameters of the graph neural network model, Co represents the number of
output channels, Ci represents the number of input channels, kw represents the
convolution kernel width, and kh represents the convolution kernel height.

For the weight training of different particles or subnetworks of particle swarm
algorithm, it is repetitive and redundant, which requires a lot of training time and
computer resources. So the multi-objective particle swarm algorithm combined
with supernet is proposed. In MO-GNN method, the weights of all candidate
network architectures are obtained by training the weights of the super network
once in the training process, which avoids training the weights of each particle or
subnetwork separately, and realizes weight sharing in the search process of neu-
ral network architecture. In this algorithm, the supernet is built by connecting
all candidate operation types with nodes. The weight of the supernet contains
the weights of all candidate particles or networks, so all particles can inherit
the corresponding weights from the supernet. In the process of each iteration,

8 L. He et al.

the supernet is first trained with the training set, and all candidate particles
inherit the corresponding weights in the super network, and then the MO-GNN
algorithm is used to search for the best particles among all candidate particles,
so as to realize the combination of particle swarm algorithm and super network,
thereby reducing the training time and calculation amount in the model search
process.

In the process of particle updation, the particle is optimized by comparing
with the gBest and the pBest and randomly selecting. According to the randomly
generated number C between [0,1], compare with the parameter Cg we set, and if
C is not less than Cg, the difference between the particle gBest and the particle
is taken; If C is less than Cg, take the difference beteeen the particle pBest
and the particle. If there is no difference, it means that the two are the same
and the current particle is not updated; else it means that the architecture in
pBest or gBest is better than the particle architecture to be updated, and the
particles selected from pBest or gBest are selected to replace the current solution
according to the probability.

4 Experimental Result

4.1 Experimental Settings

In this section, we describe the experimental setup and parameters of the algo-
rithm, and demonstrate the advantages of the proposed MO-GNN algorithm in
transduction and induction tasks through a number of experiments. The exper-
imental conditions are as follows: i9-10900 CPU, NVIDIA GTX1080 Ti GPU,
48GB memory. In addition, we set the population size to 100, the number of
iterations to 40, the archive threshold to 10, and the mutation parameter Cg to
0.5. In all methods, the learning rates of the weights during search and testing
are 0.025 and 0.05, respectively. All information about the datasets we use is
shown in Table 2.

A. Transduction Learning
Transduction learning is a method of predicting specific test set data by ob-

serving specific training set data, which can use the information of unlabeled test
set data to find clusters and classify more effectively. We employ three benchmark
reference network datasets, including Cora, Citeseer, and Pubmed, all of which
are citation networks provided [20] for transduction node representation learning.
The Cora dataset contains 2708 research papers divided into 7 machine learning
classes, such as reinforcement learning and genetic algorithms. There are 5429
edges between them, and each paper node is described by a 1433-dimensional
eigenvector. The Citeseer dataset contains 3327 research papers of 6 classes with
4732 links between them, and each paper node has a 3703-dimensional feature
vector. The Pubmed dataset contains 19,717 document nodes and 44,338 edges.
Each node belongs to one of 3 classes and has a 500-dimensional feature vector.

For these three datasets, all nodes in the graph are divided into training set,
validation set, and test set in the proportions of 60%, 20%, and 20%.

Title Suppressed Due to Excessive Length 9

B. Inductive Learning
Inductive learning refers to inference from specific observed data to gen-

eral data, using labeled data for model training, but its training set data does
not contain test set data, and then using the trained model to predict the la-
bels of the test set data. For inductive learning, training graphs and test graphs
are different. Therefore, unlike transduction learning, inductive learning involves
embedding learning of several different subgraphs. We use a protein-protein in-
teraction (PPI) dataset containing 24 subplots for inductive node representation
learning. PPI consists of graphs corresponding to different human tissues, with
a total of 56,944 nodes and 818,716 edges. Each graph has an average of 2372
nodes, each node has 50 features, including positional gene sets, baseline gene
sets, and immune features. Each node corresponds to multiple classes (labels)
from 121 classes. For this dataset, we use 20 graphs for training, 2 graphs for
validation, and 2 graphs for testing, where neither the validation graph nor the
test graph are related to the graphs in the training set.

For the above dataset, we follow [21], using a dataset of 30% for training,
10% for validation, and the remaining 60% for testing.

Table 2: The Comparison of Different Datasets.
Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7

PubMed 3327 4552 3703 6

CiteSeer 19717 44324 500 3

PPI 56944 818716 50 121

For the datasets Cora, CiteSeer, and PubMed, each class utilizes 20 nodes
for the training set, 500 nodes for the validation set, and 1000 nodes for the test
set. As for the PPI dataset, this paper employs 20 graphs for training, 2 graphs
for validation, and 2 graphs for testing, where the validation and test graphs are
disconnected from the graphs in the training set.

4.2 Comparison with Other Methods

A. Introduction to Comparison Algorithms
In order to evaluate the performance of our proposed method, the most ad-

vanced artificially designed graph neural network model and the latest method of
graph neural network architecture search methods are selected for comparison.In
order to fairly compare the efficiency and performance of the manually designed
graph neural network model and the graph neural network architecture search
method, the number of layers of all graph neural network models are set to 3.

10 L. He et al.

For all comparison algorithms, we report the average best test accuracy and
standard deviation for the architecture searched. Specifically, we retrain each
search schema ten times to avoid randomness.

GCN [2]: The paper expands the convolutional range from the traditional
Euclidean space to the non-Euclidean space, and can perform convolution op-
erations on the structural data of the non-Euclidean space such as graphs, and
the framework proposes a local first-order approximation of spectral convolu-
tion based on the frequency domain, and introduces convolution into the graph
neural network model.

GAT [4]: The framework utilizes a self-attention mechanism to solve the
shortcomings of previous methods based on graph convolution or its approxima-
tion, by superimposing layers of nodes capable of participating in their neigh-
borhood features, we can assign different weights to different nodes in the neigh-
borhood without the need for any expensive matrix operations (such as inverse)
or prior knowledge of the graph structure.

GraphSAGE [14]: The author proposes an inductive learning framework to
extend graph convolution to inductive learning tasks by sampling neighbor nodes
and training the function of aggregating node neighbors, and generalizing the
unknown nodes.

LGCN [22]: This framework is to deal with the problem that the number and
order of neighbors in the graph structure are not fixed, and automatically select
a fixed number of neighbor nodes for each feature, transform the graph structure
data into a one-dimensional grid structure, and apply conventional convolution
operations on the graph.

GraphNAS [10]: The framework uses recurrent networks to generate variable-
length strings describing graph neural network architectures and reinforcement
learning to train recurrent networks to maximize the expected accuracy of the
architecture generated on validation datasets.

SNAG [23]: To compensate for the deficiencies in search space, expressive-
ness, and search efficiency of GraphNAS and Auto-GNN, the authors propose
the SNAG framework (Simplified Neural Network for Neural Structure Search
Graphs), including a new search space and reinforcement learning-based search
algorithms.

Genetic-GNN [13]: The author proposes a new evolutionary algorithm frame-
work that dynamically approaches the optimal fit of each other in the process
of alternating evolution between GNN model structures and hyperparameters.

SANE [11]: This author proposes a framework that attempts to search aggre-
gation neighborhoods to automate the design of data-specific GNN schemas. By
designing a novel and expressive search space, a differentiable search algorithm
is proposed, which is more efficient than previous reinforcement learning-based
search algorithms.

B. The Analysis of Accuracy and Parameters

Title Suppressed Due to Excessive Length 11

In this section, the results compared with other methods in terms of clas-
sification accuracy and parameters are shown and analyzed. To illustrate the
feasibility of MO-GNN method, the convergence of the model is also studied.

Table 3 shows the classification results of transduction learning and inductive
learning tasks, from which it can be seen that the overall classification accuracy
of the graph neural network architecture discovered by MO-GNN is significantly
better than that of the manually designed graph neural network model. For the
transduction and induction tasks, it can be seen that the overall classification
accuracy of MO-GNN on the three datasets is significantly higher than that
of manually designed graph neural network models such as GCN and GAT.
Therefore, we mainly compare the MO-GNN algorithm with the SOTA model
of the NAS method.

Table 3: The comparison of MO-GNN with Other Methods.
Cora PubMed CiteSeer PPI

Accuracy Parameters Accuracy Parameters Accuracy Parameters Accuracy Parameters
GCN [2] 85.7±0.3% 25.9K 73.6±0.4% 26.2K 87.9±0.1% 50.8K 73.5±0.2% 182.7K
GAT [4] 86.1±0.2% 108.2K 74.0±0.2% 48.2K 87.7±0.3% 296.5K 95.3±0.4% 893.2K

GraphSAGE [14] 85.9±0.4% 68.2K 74.1±0.6% 54.3K 87.4±0.2% 58.9K 65.7±0.6% 225.3K
LGCN [22] 85.9±0.3% 69.5K 74.3±0.5% 73.1K 87.2±0.4% 65.3K 78.4±0.2% 227.3K

GraphNAS [10] 86.7±0.4% 98.5K 77.0±0.3% 83.5K 87.9±0.5% 245.7K 96.9±0.1% 1095.1K
SNAG [23] 86.9±0.6% 76.3K 76.5±0.6% 69.1K 87.7±0.4% 220.9K 97.6±0.1% 823.7K

Genetic-GNN [13] 87.1±0.3% 75.7K 77.8±0.5% 142.5K 88.6±0.6% 190.4K 98.0±0.1% 859.4K
SANE [11] 87.3±0.6% 86.1K 77.5±0.6% 74.9K 88.4±0.2% 251.3K 98.1±0.1% 964.3K

MO-GNN 88.7±0.3% 59.0K 78.8±0.4% 61.8K 89.7±0.1% 59.1K 98.6±0.2% 649.5K

For the Cora dataset, compared with the GraphNAS [10], SNAG, Genetic-
GNN [13] and SANE [11] algorithms, the MO-GNN method improves the overall
classification accuracy of the graph neural network model by 2%, 1.8%, 1.6% and
1.4%, respectively. Meanwhile, the model also has certain advantages in terms
of the number of parameters, which was reduced by 39.5K, 17.3K, 16.7K and
27.1K respectively compared with the above methods. For the PubMed dataset,
the MO-GNN algorithm improves the classification accuracy of the graph neural
network model by 1.8%, 2.3%, 1.0% and 1.3%. Compared with Genetic-GNN,
the number of parameters is reduced by 56.6%. For the CiteSeer dataset, MO-
GNN method still maintain the same advantages as other two homogeneous
datasets. For induction tasks, similar to transduction tasks, MO-GNN consis-
tently outperforms all baselines, compared with the GraphNAS [10], SNAG,
Genetic-GNN [13] and SANE [11] algorithms, MO-GNN algorithm improves the
model classification accuracy by 1.7%, 1%, 0.6% and 0.5%, respectively. Com-
pared with the GraphNAS algorithm, the number of parameters was reduced by
40.7% in PPI dataset. In MO-GNN algorithm, the increase of model classifica-
tion accuracy does not lead to a significant increase in the number of parameters,
and even greatly reduces the number of parameters of the graph neural network
model.

12 L. He et al.

In general, compared with the manually designed graph neural network model
and the most advanced graph neural network architecture search method, the
proposed MO-GNN algorithm has greatly improved the classification accuracy
and parameter quantity.

(a) The parameter quantity and classifica-
tion accuracy of Cora

(b) The parameter quantity and classifica-
tion accuracy of PubMed

(c) The parameter quantity and classifica-
tion accuracy of CiteSeer

(d) The parameter quantity and classifica-
tion accuracy of PPI

Fig. 4: Comparison of parameter quantity and classification accuracy for different
datasets

Fig. 4a-4d shows the change of classification accuracy and parameter quantity
of the optimal particle verification set of the MO-GNN algorithm in the iterative
process. Under ideal conditions, we would choose a graph neural network model
with higher accuracy and fewer parameters. The number of model parameters is
related to the complexity of the model, and fewer model parameters means lower
the complexity of the model. After rapid changes, the model gradually stabilizes
and remains unchanged in the final iteration. It can be seen from the figure that
in the first few iterations, the amount of parameters of the model has changed
dramatically, for the Cora dataset, the amount of model parameters of the op-
timal particles converges at the 13th iteration, but the classification accuracy of
the optimal particles in the validation set still increases after the convergence of

Title Suppressed Due to Excessive Length 13

the model parameter amount, mainly because the weight parameters inherited
from the supernet continue to be optimized during subsequent iterations until
the end of the iteration. For the PubMed dataset, the number of parameters
and classification accuracy converged on the 9th iteration. The two objective
functions of the CiteSeer dataset and the PPI dataset converge at the 10th and
14th iterations, respectively.

From the above convergence analysis, we can see that MO-GNN converges
within 14 iterations on the four datasets of the transduction and induction task.

4.3 Ablation Experiments

In this section, the effect of different number of the layers and the validity of the
super network is analyzed and verified.

It can be seen from Table 3 that the classification performance of shallow
graph neural network models is relatively average, mainly because the model
with simple structure may not be able to extract deep features, and the deep
graph neural network model does not show better classification performance,
which may be due to the problem of overfitting in the case of limited training
samples.

In order to further illustrate the effectiveness of our proposed supernet shar-
ing weight strategy, the algorithm using the super network sharing weight strat-
egy is named as MO-GNN-WS, and the algorithm without the strategy is rep-
resented as MO-GNN. In Fig. 5a-5b, it is clear to seen that compared with MO-
GNN, the time loss in the search phase on the four graph datasets is reduced
by about 90%. In terms of memory loss,the weight sharing strategy reduced by
65.0%, 64.8%, 77.6% and 63.2%, respectively. In general, the proposed super
network sharing weight strategy greatly reduces the resource consumption of
graph neural network architecture search.

(a) The Comparison of Search Time in
MO-GNN and MO-GNN-WS

(b) The Comparison of Memory in MO-
GNN and MO-GNN-WS

Fig. 5: Comparison of time and memory in MO-GNN and MO-GNN-WS

14 L. He et al.

5 Conclusion

In the paper, MO-GNN, a graph neural network search model based on multi-
objective particle swarm optimization algorithm is proposed for the first time.

Extensive experiments have been carried out on four real datasets of the
transformation and induction task. Compared with the most advanced graph
neural network architecture search method and the manually designed graph
neural network model, the experimental results show that the model has a great
improvement in classification accuracy. From the perspective of model complex-
ity, compared with the existing algorithms, the graph neural network model
searched by the framework significantly reduces the number of parameters of
the model. Combined with the super network, our method greatly improves the
search efficiency and decrease the training stage.

References

1. Scarselli F, Gori M, Tsoi A C, Hagenbuchner M and Monfardini G. The Graph
Neural Network Model[J]. IEEE Transactions on Neural Networks, vol. 20, no. 1,
pp. 61-80, 2008.

2. Chen M, Wei Z, Huang Z, et al. Simple and deep graph convolutional networks[C].
International Conference on Machine Learning, pp. 1725-1735, 2020.

3. He Z, Zhong Y and Pan J. Emotion-related awareness detection for patients with
disorders of consciousness via graph isomorphic network[C]. Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, pp. 3158-3164, 2022.

4. Velickovic P, Cucurull G, Casanova A, et al. Graph attention networks[J]. Stat, vol.
1050, no. 20, pp. 10-22, 2017.

5. Ranjan E, Sanyal S, Talukdar P. Asap: Adaptive structure aware pooling for learn-
ing hierarchical graph representations[C]. Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no.4, pp. 5470-5477, 2020.

6. Qi X, Liao R, Jia J, et al. 3d graph neural networks for rgbd semantic segmenta-
tion[C]. Proceedings of the IEEE International Conference on Computer Vision, pp.
5199-5208, 2017.

7. Huang C, Xu H, Xu Y, et al. Knowledge-aware coupled graph neural network for
social recommendation[C]. Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 35, no.5, pp. 4115-4122, 2021.

8. Song W, Xiao Z, Wang Y, et al. Session-based social recommendation via dynamic
graph attention networks[C]. Proceedings of the Twelfth ACM international Con-
ference on Web Search and Data Mining, pp. 555-563, 2019.

9. Feng G, Wang H, Wang C. Search for deep graph neural networks[J]. Information
Sciences, 649: 119617, 2023.

10. Gao Y, Yang H, Zhang P, et al. GraphNAS: Graph Neural Architecture Search
with Reinforcement Learning[J]. ArXiv:1904.09981, 2019.

11. Zhao H, Yao Q, Weiwei T U. Search to aggregate neighborhood for graph neural
network[C]. 2021 IEEE 37th International Conference on Data Engineering, pp.
552-563, 2021.

12. Zhang X, Ma H, Zhang X, et al. Compact model-free adaptive control algorithm
for discrete-time nonlinear systems[J]. IEEE Access, 2019, 7: 141062-141071.

Title Suppressed Due to Excessive Length 15

13. Shi M, Tang Y, Zhu X, et al. Genetic-GNN: Evolutionary architecture search for
Graph Neural Networks[J]. Knowledge-based Systems, vol. 247, pp.108752, 2022.

14. Oh J, Cho K, Bruna J. Advancing graphsage with a data-driven node sampling[J].
ArXiv:1904.12935, 2019.

15. Qin Y, Wang X, Zhang Z, et al. Multi-task graph neural architecture search with
task-aware collaboration and curriculum[J]. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

16. Zhou K, Song Q, Huang X, et al. Auto-GNN: Neural Architecture Search of Graph
Neural Networks[J]. Frontiers in Big Data, vol. 5, pp. 1029307, 2022.

17. Liang J, Ban X, Yu K, et al. A survey on evolutionary constrained multi-objective
optimization[J]. IEEE Transactions on Evolutionary Computation, vol. 27, no. 1,
pp. 201-221, 2022.

18. Y. Kim, B. Reddy, and S. Yun. NEMO: Neuro-evolution with multiobjective opti-
mization of deep neural network for speed and accuracy[C]. International Conference
on Machine Learning, vol. 1, pp. 1-8, 2017.

19. Wang X, Wang X, Jin L, et al. Evolutionary algorithm-based and network architec-
ture search-enabled multiobjective traffic classification[J]. IEEE Access, vol.9, pp.
52310-52325, 2021.

20. Sen P, Namata G, Bilgic M, Getoor L, Galligher B, and Eliassi Rad T. Collective
Classification in Network Data[J]. AI Magazine, vol. 29, no. 3, pp. 93, 2008.

21. Wang Z, Lv O, Lan X, and Zhang Y. Cross-lingual knowledge graph alignment
via graph convolutional networks[C]. Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 349-357, 2018.

22. Gao H, Wang Z, Ji S. Large-Scale Learnable Graph Convolutional Networks[C].
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1416-1424, 2018.

23. Zhao H, Wei L, Yao Q. Simplifying Architecture Search for Graph Neural Net-
work[J]. ArXiv: 2008.11652, 2020.

