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Abstract. In underwater environments where color distortion and significant at-

tenuation of visible light spectra occur, image enhancement techniques are 

widely applied to improve the performance of object detection and recognition. 

However, traditional image enhancement algorithms have certain limitations in 

terms of processing speed and flexibility, while currently popular deep learning-

based image enhancement methods demand increasingly large computational re-

sources, making them challenging to apply in engineering practice. To address 

this issue, this paper proposes the FUNIE-CLAHE architecture, designed to en-

hance the performance of the YOLOv5s object detection model while ensuring 

processing speed. The FUNIE-CLAHE architecture utilizes the output images 

from the FUNIE-GAN network generator to fit the output of the traditional image 

enhancement algorithm CLAHE, thereby significantly improving image quality. 

The enhanced images are used as input for the YOLOv5s model. Experimental 

results on the TrashICRA19 dataset show that this method increases mAP by 

8.6% compared to unenhanced input, 14.3% compared to input enhanced by the 

FUNIE-GAN network, and 6% compared to input enhanced by the traditional 

CLAHE algorithm. The proposed FUNIE-CLAHE architecture not only has ad-

vantages in computational efficiency but also effectively improves the detection 

performance of YOLOv5s while maintaining processing speed (FPS). This study 

demonstrates the potential of combining deep learning and traditional algorithms 

for computer vision tasks. 

Keywords: Underwater Image Enhancement, Knowledge Distillation, Object 

Detection 

1 Introduction 

In recent years, underwater object detection has garnered extensive attention and appli-

cation in fields such as marine environmental protection, underwater resource explora-

tion, marine biology research, and underwater archaeology. However, the complex 

lighting conditions, suspended particles, and water scattering effects in underwater en-

vironments significantly degrade image quality. Underwater images often exhibit color 
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distortion, such as green and blue hues, due to the varying attenuation rates of red, 

green, and blue light[1]. Additionally, particles suspended in water absorb a significant 

portion of the light before it reaches the camera, altering the light's direction and result-

ing in low contrast, blurriness, and haziness. These degraded underwater images in-

crease the difficulty of detection tasks. 

Recently, many deep learning-based methods have been proposed to address the 

problem of image restoration. Extensive research has been conducted in the specific 

field of underwater image restoration, demonstrating that deep learning methods per-

form better in complex environments compared to traditional image processing tech-

niques. Traditional methods typically rely on prior knowledge and manually designed 

features, which often show limitations when faced with the diverse and dynamic un-

derwater environment. In contrast, deep learning-based methods can automatically 

learn complex features and structures of images, achieving better restoration results 

under a broader range of conditions. 

Despite achieving good results on some datasets, most deep learning-based methods 

are trained in a supervised manner, relying on paired datasets of low-quality and high-

quality images. This supervised learning approach depends heavily on large annotated 

datasets, which are expensive and time-consuming to obtain in practical applications, 

especially in the field of underwater image enhancement. Currently, many underwater 

paired datasets consist of images synthesized using physical models or Generative Ad-

versarial Networks (GAN)[2]. Moreover, the variability in underwater lighting and par-

ticle interference makes it difficult for these paired datasets to comprehensively cover 

all complex situations, limiting the model's generalization ability. 

On the other hand, traditional underwater image enhancement methods, while ad-

vantageous in computational complexity and real-time performance compared to deep 

learning methods, often yield limited enhancement effects. Traditional methods rely on 

predefined physical models and algorithmic rules, usually optimized for specific sce-

narios, lacking adaptability to diverse and complex environments. These methods may 

fail to achieve consistent image quality improvement under different underwater con-

ditions, and they often miss subtle image features. For example, varying depths and 

lighting conditions underwater result in different degrees of scattering, absorption, and 

reflection, leading to reduced contrast, color shifts, and blurred details. Although tradi-

tional methods can be optimized for specific situations, they often fall short of achiev-

ing ideal enhancement in diverse underwater environments. In contrast, deep learning 

methods, trained on large-scale underwater image datasets, can learn more complex and 

abstract feature representations, adapting better to diverse and complex underwater en-

vironments. Deep learning models can automatically learn patterns of optical charac-

teristics changes, better preserving detail information and color accuracy during image 

enhancement. 

Additionally, traditional metrics such as PSNR and SSIM, while reflecting recon-

struction quality to some extent, often do not fully align with human subjective percep-

tion in underwater environments. Underwater images are affected by light attenuation, 

color shifts, scattering, and noise, complicating image quality assessment. Recently 

proposed metrics such as UIQI[3], UCIQE[4] , and UIQM[5] consider structural and 

color information of images, improving evaluation accuracy to some extent. However, 
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Wang et al[6]. have demonstrated that image evaluation metrics are not always posi-

tively correlated with object detection accuracy. 

To address these issues, this paper proposes the FUNIE-CLAHE architecture, which 

generates high-quality enhanced images by learning the output characteristics of tradi-

tional algorithms, without relying on large annotated datasets. Our FUNIE-CLAHE ar-

chitecture not only has significant advantages in computational efficiency but also 

maintains stable enhancement effects in complex underwater environments. We use the 

mAP (mean Average Precision) metric from the YOLO object detection network to 

evaluate the enhanced images. 

Experimental results show that using the enhanced images generated by the FUNIE-

CLAHE architecture as input for the YOLOv5s model significantly improves the mAP 

metric on the TrashICRA19[18] dataset . Compared to traditional methods, our method 

enhances image quality and detection performance while significantly reducing com-

putational costs and dependence on annotated data. 

In summary, our main contributions are as follows: (1) This study presents an inno-

vative image enhancement method that combines the strengths of traditional algorithms 

and deep learning, achieving efficient underwater image enhancement and significant 

improvement in object detection performance. (2) We use the mAP metric to evaluate 

image quality in practical application scenarios, considering both image quality im-

provement and performance enhancement in object detection tasks, ensuring practical 

significance and operability of our evaluation. (3) Extensive experiments demonstrate 

the effectiveness of our proposed method. 

2 Related Work 

2.1 Underwater Image Enhancement 

Traditional underwater image enhancement methods can be mainly divided into two 

categories: those based on physical models and those not based on physical models[7] . 

Methods based on physical models[8] enhance underwater images by establishing op-

tical models that simulate the physical processes of light propagation, scattering, and 

absorption during underwater imaging. These methods typically rely on modeling the 

physical characteristics of the underwater environment, such as the absorption coeffi-

cient, scattering coefficient, and reflectivity of seawater. The images are then corrected 

and enhanced based on the established physical model. Although these methods have a 

certain scientific basis in theory, their practical application is often limited by the com-

plexity of the underwater environment and the uncertainty of parameters, making ac-

curate image enhancement challenging. 

Non-physical model-based methods primarily rely on image processing techniques 

and mathematical methods such as filtering[9], histogram equalization[10], and wavelet 

transform[11]. These methods do not require modeling the physical properties of the 

underwater environment but directly process image pixels to achieve enhancement. 

While these methods can achieve good results in certain situations, their enhancement 

effects are often not ideal due to the lack of modeling of underwater optical processes. 

They struggle to adapt to different underwater environments and lighting conditions. 
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In recent years, deep learning-based methods for underwater image enhancement 

have emerged. These methods enhance underwater images efficiently by learning com-

plex features and patterns through deep neural network models. Compared to traditional 

methods based on physical models or image processing techniques, deep learning meth-

ods can better capture high-level features and semantic information in images, resulting 

in higher-quality image enhancement. 

One common deep learning-based method for underwater image enhancement is us-

ing Convolutional Neural Networks for end-to-end learning and optimization[12]. 

These methods train deep CNN models to learn intrinsic features and structural infor-

mation from a large number of underwater image datasets, and then use the trained 

models to enhance underwater images. By stacking multiple convolutional layers and 

residual connections, these methods achieve efficient enhancement of underwater im-

ages. 

In addition to CNN-based methods, there are also underwater image enhancement 

methods based on Generative Adversarial Networks[13]. These methods train genera-

tor and discriminator networks to work together to generate realistic underwater im-

ages, thereby enhancing them. Through adversarial training, GANs learn the real dis-

tribution of underwater images, producing more realistic and clear images. 

Moreover, some underwater image enhancement methods incorporate attention 

mechanisms[2]. By introducing attention mechanisms into deep learning models, these 

methods better capture and utilize important feature information in images. Attention 

mechanisms dynamically focus on different regions of the image, improving the mod-

el's performance in dealing with complex and variable underwater environments. 

However, most existing models cannot guarantee robustness and real-time perfor-

mance across different datasets. The difficulty in obtaining and annotating high-quality 

underwater image data further limits their generalization in practical engineering appli-

cations. Figure 1 visualizes the output images of eight underwater image enhancement 

algorithms compared to the output of the FUNIE-CLAHE architecture. It is evident that 

the images generated by the FUNIE-CLAHE architecture are visually superior to those 

produced by other enhancement algorithms. The enhanced images not only perform 

better in terms of contrast and color restoration but also retain more detail, making them 

clearer and more natural. Quantitative analysis in Figure 3 also demonstrates that the 

FUNIE-CLAHE architecture has a significant advantage over other underwater image 

algorithms. 

2.2 Knowledge Distillation 

Knowledge Distillation is a machine learning technique aimed at transferring 

knowledge from a large, complex model (Teacher Model) to a smaller and more effi-

cient model (Student Model), thereby enhancing the performance of the latter. This 

method was first introduced by Hinton et al [14]. in 2015 and has since been widely 

applied in model compression, transfer learning, and multi-task learning. 

The core idea of Knowledge Distillation is to use the soft labels generated by the 

teacher model to train the student model. Soft labels refer to the probability distribution 

at the output layer of the teacher model, rather than the hard labels commonly used in 

traditional training, which are the one-hot vectors of the categories. Soft labels contain 
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rich information about the similarities between data categories, helping the student 

model to learn and generalize better. 

When training the student model, a combination of the traditional cross-entropy loss 

function (based on hard labels) and the distillation loss function (based on soft labels) 

is used. The distillation loss function is typically the Kullback-Leibler divergence, 

which measures the difference between the probability distribution output by the stu-

dent model and the soft labels from the teacher model. In this way, the student model 

learns not only the features of the data but also the teacher model's understanding of the 

relationships between data categories. By transferring knowledge from the large model 

to the smaller model, the parameter count and computational complexity are signifi-

cantly reduced, making the model more suitable for resource-constrained environments 

such as mobile devices and embedded systems. 

In recent years, knowledge distillation technology has achieved significant develop-

ments and progress in both academic research and practical applications. For example, 

multi-teacher models and multi-task distillation[15], self-distillation[16], and hierar-

chical distillation[17] have been explored. Knowledge distillation technology has found 

extensive applications not only in image classification but also in natural language pro-

cessing, speech recognition, recommendation systems, and other fields. With the con-

tinuous advancement of deep learning technology and the increasing availability of 

computational resources, knowledge distillation technology is expected to play a cru-

cial role in a broader range of areas, driving the development and application of AI. 

 

Fig. 1. Visualization of outputs from different underwater image enhancement algorithms. The 

Original Image is a randomly selected frame from the TrashICRA19[18] test video stream. Ours 

refers to the enhanced image using the FUNIE-CLAHE architecture. CLAHE[10], GC[19], 

HE[20], FUNIGAN[13], ICM[21],  RLD[22], DCP[23], FUSION[24]. 
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3 Method 

3.1 FUNIE-CLAHE Architecture 

Underwater environments are complex and highly variable, with different depths, light-

ing conditions, and levels of turbidity affecting image quality. Existing image enhance-

ment algorithms often rely on paired datasets or specific underwater scenarios, limiting 

their generalization ability in practical applications. To address this issue, we propose 

the FUNIE-CLAHE architecture, as shown in Figure 2. 

 

Fig. 2. FUNIE-CLAHE Network Architecture 

For an unpaired distorted image X, we use the traditional underwater image enhance-

ment algorithm CLAHE to compute the enhanced image Y. Our goal is to learn a map-

ping F:X→Y. We adopt a knowledge distillation-based network architecture, with the 

traditional CLAHE algorithm serving as the teacher model and the generator of FUNIE-

GAN as the student model. In this knowledge distillation framework, the teacher model 

CLAHE provides high-quality enhanced images Y as the learning target for the student 

model FUNIE. The student model FUNIE is an encoder-decoder network designed for 

efficient underwater image enhancement. The encoder part is responsible for extracting 

features from the input image, while the decoder part utilizes these features to generate 

the enhanced image. The encoder comprises multiple convolutional layers, each includ-

ing convolution operations, batch normalization, and activation functions. Through 

layer-by-layer convolution, the encoder gradually extracts both low-level and high-

level features, transforming the input image into a compact feature representation. The 

channel dimensions of these features increase from the initial 3 channels to {32, 128, 

256, 512}. The decoder is symmetrical to the encoder and contains multiple deconvo-

lution (or upsampling) layers, each also including batch normalization and activation 
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functions. The decoder uses the features extracted by the encoder to progressively re-

store the spatial resolution of the image, generating the enhanced output. 

3.2 Knowledge Distillation Loss  

Distillation loss directly measures the difference between the images generated by the 

student model and the output images of the teacher model, guiding the student model 

to better learn the augmentation strategies of the teacher model. In the FUNIE-CLAHE 

architecture, the teacher model CLAHE provides a soft label T(X) to guide the student 

model FUNIE predicted output G(X) through the distillation loss function. This method 

not only allows the student model to better mimic the behavior of the teacher model but 

also leverages the knowledge of the teacher model to enhance the performance of the 

student model. 

Existing methods have shown that introducing an L1 loss term in the objective func-

tion can enable the student model G(X) to sample better in the global space. Therefore, 

we add the following loss term in the distillation loss function: 

𝐿𝑂𝑆𝑆1(𝐺, 𝑇) = 𝐿1(𝐺(𝑋), 𝑇(𝑋)) (1) 

Since the outputs of the student model G(X) and the teacher model T(X) are RGB 

channel color images, we incorporate a content loss term in the distillation loss. Inspired 

by the feature loss mentioned in Yang[25], we take the output of the teacher model 

T(X) as the input to VGG-19 to extract high-dimensional features and compute the loss 

between the high-dimensional features of the student model G(X) and those of the 

teacher model T(X), where MSE denotes the mean squared loss: 

𝐿𝑂𝑆𝑆2(𝐺, 𝑇) = 𝑀𝑆𝐸 (𝜑(G(X)), 𝜑(T(X))) (2) 

Finally, the distillation loss expression is as follows: 

𝐿𝑂𝑆𝑆(𝐺, 𝑇) = 𝐿1(G(X), T(X)) + 𝑀𝑆𝐸 (𝜑(G(X)), 𝜑(T(X))) (3) 

4 Experiment 

We implemented the FUNIE-CLAHE architecture using the PyTorch library. It was 

trained and underwent distillation learning on the TrashICRA19 dataset, which consists 

of 5720 images, each with a resolution of 480 x 320. The enhanced images produced 

by FUNIE-CLAHE were then input into an object detection network. The quality of 

image enhancement was evaluated using the mean Average Precision (mAP) metric of 

the detection network. Training was conducted on an NVIDIA GeForce GTX 3080, 

with models undergoing 100 iterations and a batch size of 8. We compared and evalu-

ated our proposed architecture against different enhancement algorithms and various 

object detection networks. 
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4.1 Object Detection Model Selection 

Deep learning-based object detection methods can be broadly classified into two cate-

gories: two-stage detectors and one-stage detectors. Two-stage detectors perform the 

detection task in two stages: the first stage generates candidate regions, and the second 

stage classifies and refines these regions. Although this approach usually achieves high 

detection accuracy, it requires two processing steps, leading to high computational 

overhead and inference time, making it unsuitable for real-time applications. Therefore, 

we used the YOLO series of neural networks, a representative of one-stage detectors, 

to evaluate the original unenhanced TrashICRA19 dataset. 

YOLO (You Only Look Once) series networks represent a significant breakthrough 

in object detection. Their main feature is performing object detection end-to-end 

through a single neural network, achieving extremely high detection speed and good 

accuracy. YOLOv1 initially proposed transforming the object detection problem into a 

regression problem, directly predicting object bounding boxes and class probabilities 

through a single neural network. By inputting the entire image into the network, it elim-

inates the sliding window and candidate region generation steps, greatly improving de-

tection speed. It uses a convolutional neural network (CNN) to extract features, and the 

final convolutional layer outputs a tensor of size S×S×(B×5+C), where S is the grid 

size, B is the number of bounding boxes predicted per grid, and C is the number of 

classes. However, YOLOv1[26] performs poorly on small object detection because 

each grid can only predict a fixed number of bounding boxes, making it difficult to 

detect multiple objects within the same grid due to spatial constraints. 

YOLOv2[27] introduced the anchor box mechanism, predicting bounding boxes 

through a predefined set of anchor boxes, enhancing the network's adaptability to ob-

jects of different scales. By dynamically changing the input image resolution during 

training, it improved the model's ability to detect objects of varying scales, addressing 

some of YOLOv1's shortcomings. YOLOv3[28] used Darknet-53 as the backbone net-

work, with more convolutional layers and residual blocks to improve feature extraction 

capabilities. It adopted a feature pyramid network (FPN) to perform detection at three 

different scales, significantly enhancing the detection capability for small objects. 

YOLOv4[29] employed CSPDarknet53 as the backbone network, introducing the 

cross-stage partial (CSP) structure to reduce computation and improve accuracy. It used 

the PANet (Path Aggregation Network) for feature fusion, further enhancing the detec-

tion capability for multi-scale objects. New techniques such as Mosaic data augmenta-

tion and Self-Adversarial Training (SAT) were introduced in the data augmentation 

part to improve the model's generalization ability. YOLOv5 integrated some new ideas 

from other detection algorithms, including the Focus structure and CSP structure, add-

ing the FPN+PAN structure in the NECK part. With numerous improvements in archi-

tecture and optimization, it has become widely popular in the industry for its simplicity 

and usability. 

The recently proposed YOLOv8 architecture by the authors of YOLOv5 also incor-

porates the CSP module idea in the Backbone, replacing the C3 module from YOLOv5 

with the C2f module for further lightweight design. The Head module uses the current 

mainstream decoupled head structure, separating the classification and detection heads, 
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and switches from Anchor-Based to Anchor-Free. The performance of various detec-

tion models on the TrashICRA19 dataset is shown in Table 1. 

Table 1. Performance of YOLO Series Networks on the TrashICRA19 Dataset. 

Model SIZE(MB) mAP(%) FPS(GPU) FPS(CPU) 

Origin(YOLOv2) 200 47.9 50 3 

YOLOV3 240 50.65 73 3 

YOLOV4 250 46.30 61 2 

YOLOV5S 28 48.40 118 5 

YOLOV8S 23 48.10 102 5 

From Table 1, we can observe the following key points regarding the performance of 

YOLO series networks on the TrashICRA19 dataset: Origin (YOLOv2) represents the 

detection results on the validation set from the original TrashICRA19 paper. YOLOv3 

achieves the best performance in terms of mean Average Precision (mAP) on the Trash-

ICRA19 dataset; YOLOv5s has the fastest running speed (frames per second, FPS) on 

an NVIDIA GeForce GTX 3080 GPU; YOLOv8s has the smallest model size but 

demonstrates poorer generalization on this dataset compared to YOLOv5s; Balancing 

mAP accuracy and FPS running speed, we have chosen YOLOv5s as the baseline 

model for subsequent evaluations of underwater image enhancement algorithms. 

4.2 Quantitative Evaluation 

Unlike traditional underwater image quality evaluation metrics such as PSNR (Peak 

Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure), which provide 

objective evaluations based on the signal-to-noise ratio, contrast, and color differences 

of the image itself, we are driven by specific application scenarios. Therefore, we use 

mAP (mean Average Precision) to evaluate the performance of enhanced underwater 

images in object detection tasks, as illustrated in Figure 3. 

In Figure 3, the two axes represent processing speed (FPS) and the detection metric 

(mAP). The horizontal axis shows traditional underwater image enhancement algo-

rithms versus deep learning-based methods. The FunieGAN network, for instance, sig-

nificantly outperforms traditional algorithms in terms of processing speed due to the 

advantage of parallel computation on hardware. However, the enhanced images from 

FunieGAN show a substantial drop in mAP when evaluated with YOLOv5s. 

Despite being a state-of-the-art (SOTA) model in the underwater image domain as 

of 2023, U-shape also performs poorly in terms of mAP. On the other hand, the tradi-

tional enhancement algorithm CLAHE demonstrates stronger generalization compared 

to FunieGAN and U-shape. Our FUNIE-CLAHE architecture combines the strengths 

of both approaches, significantly improving YOLOv5s detection performance while 

maintaining high processing speed (FPS). Figure 4 shows the visualization results on 

YOLOv5s after a single image is enhanced by the enhancement algorithm. 
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Fig. 3. Quantitative evaluation of underwater image enhancement methods. CLAHE[10], GC[19] 

HE[20], FUNIGAN[13], ICM[21], RLD[22], DCP[23], FUSION [24], Ushape [2]. 

 

Fig. 4. Effect of Enhancement Algorithm on YOLOv5s Visualization. CLAHE[10], GC[19] 

HE[20], FUNIGAN[13], ICM[21], RLD[22], DCP[23], FUSION [24], Ushape [2]. 



11 

5 Conclusion 

The proposed FUNIE-CLAHE architecture in this paper effectively enhances the per-

formance of the YOLOv5s model in underwater object detection tasks by learning the 

mapping from distorted images to enhanced images. We utilize the traditional CLAHE 

algorithm as the teacher model and the generator of FUNIE-GAN as the student model. 

By jointly optimizing feature loss, content loss, and knowledge distillation loss, the 

student model is able to generate high-quality enhanced images. Experimental results 

demonstrate that using the enhanced images generated by our proposed method as in-

puts to the YOLOv5s model significantly improves the mean Average Precision (mAP) 

metric on the TrashICRA19 dataset, validating the effectiveness and practicality of our 

approach. In the future, we plan to investigate its feasibility in other underwater human-

machine collaboration applications, marine life recognition, and other related areas. 
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