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Abstract. A dynamic optimization strategy based on a hybrid of pseudospectral 

method and direct shooting method is proposed for the problem of fast optimiza-

tion of the variable load control process of CHP units. Firstly, the dynamic opti-

mization proposition of the optimal variable load control process of a CHP unit 

is constructed and discretized into a nonlinear programming problem. Then, the 

feasible solutions corresponding to the state variables and control variables are 

solved using the Gauss pseudospectral method, and the serial optimization strat-

egy from feasible solutions to near-optimal solutions is used. Finally, the control 

variables are discretized at the nodes as initial values for the direct shooting 

method, and then the sequential quadratic programming (SQP) algorithm is used 

to solve the exact optimal solution. Simulations were conducted on three cases 

of a 300MW CHP unit, and the results showed that the proposed method reduced 

the calculation time by approximately 32%, 36%, and 53%, respectively. 

Keywords: variable load control process, dynamic optimization, Gauss pseudo-

spectral method, direct shooting method, optimal control. 

1 Introduction 

In integrated energy system, the dynamic regulation characteristics of technologically 

modified combined heat and power (CHP) units are complex [1], and their mechanism 

analysis presents nonlinear characteristics such as multivariate coupling and multipa-

rameter superposition, which leads to the difficulty of accurate modeling and rapid sim-

ulation of the variable load response capability of CHP units. As a result, solving the 

optimal control problem of the transformed CHP unit efficiently and reliably has be-

come an emerging problem for integrated energy use.  

Several researches have been conducted on the CHP unit model and optimal control. 

In [2], a dynamic model of a heating unit in the form of differential equations of load-

pressure is developed, which analyzes the object control characteristics. In [3], the op-

timal control method of the unit is investigated under grid-connected conditions of wind 

power, which uses a heating unit's DAE model. To meet the needs of CHP units to 
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participate in scenarios such as comprehensive energy frequency regulation and sched-

uling, control strategies to improve the fast regulation capability of the units have been 

continuously proposed [4-5]. However, it is difficult to meet the computational perfor-

mance requirements of the optimization of different scenarios by using the optimal con-

trol algorithm for the variable load process of CHP units. 

In recent years, the pseudospectral method has become one of the most popular 

methods for addressing optimum control dynamic problems. In [6], the Gauss pseudo-

spectral method is proposed to obtain higher solution accuracy with fewer nodes and 

faster convergence. In [7], the gliding vehicle trajectory optimization problem is stud-

ied, which uses the Gauss pseudospectral method. In [8], an optimization strategy com-

bining particle swarm algorithms and Gauss pseudospectral method is proposed to 

solve the hybrid trajectory planning problem. In [9], the state-dependent in Gauss pseu-

dospectral method for rigid spacecraft attitude control is presented. Due to the unrea-

sonable selection of configuration points and initial values, the above methods often 

result in low accuracy or increased computational complexity when solving optimal 

control problems. 

The remaining part of the paper is organized as follows. The Section 2 establishes 

the CHP unit's variable load control system model. The Section 3 proposes a hybrid 

optimization strategy to solve the dynamic optimization problem. The simulation result 

is presented in Section 4. Conclusions are given in Section 5. 

2 Variable Load Control System Model of the CHP Unit 

2.1 Mechanistic Model of CHP Unit 

Through analyzing the characteristics of the thermal components of the heating unit 

and the steam work process in the turbine [3], a nonlinear mechanism model of the 

simplified CHP unit can be obtained. 

Dynamic Relationship of Coal-fired Pulverizing System. 

    m B BV t V t t   (1) 

      f f f B BT V t V t V t t     (2) 

where  BV t  is unit coal feed mass flow rate;  mV t  is actual coal feed mass flow 

rate of the pulverizing system; Bt  is delay time constant of the pulverizing process; 

 fV t  is boiler combustion rate; fT  is pulverizing inertia time constant. 

Dynamic Relationship of Drum Boiler System. 

        d d 3 t T 1 fC t K t V t K V t     (3) 
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       
1.5

d t 2 1 f=t t K K V t   (4) 

where  TV t  is turbine regulating gate opening;  d t  is steam package pressure; 

 t t  is main steam pressure; dC  is boiler heat storage coefficient. 

Dynamic Relationship of Turbine System. 

            t H 3 4 t T 5 z H HT P t K K t V t K t V t P t     (5) 

      1 t T=0.01t t V t   (6) 

                  z z 6 r z r 3 4 t T 5 z H96 103 + 1C t K m t t t K K t V t K t V t           (7) 

where  HV t  is extraction regulating butterfly valve opening;  HP t  is unit power 

generation;  z t  is medium pressure cylinder discharge pressure;  1 t  is turbine 

first-stage pressure;  rm t  is circulating water mass flow rate;  r t  is circulating wa-

ter return temperature; tT  is turbine inertia time constant; zC  is heat storage coefficient 

of the heat network heater. 

Dynamic Relationship of Heating Systems. 

         H 7 6 r z r= 96 103m t K K m t t t    (8) 

where  Hm t  is unit heating extraction flow; 1K , 2K , 3K , 4K , 5K , 6K  and 7K  

are static parameters. 

2.2 Model of Multivariate Coordinated Control 

Aiming at the above mechanism model, an analysis is conducted on the optimal control 

requirements of CHP units under various operating conditions and varying load. The 

direction and magnitude of the control variables  BV t ,  TV t , and  HV t  in the CHP 

unit are synergistically adjusted by the controllers so that the output variables t ( )t , 

H ( )m t , and H ( )P t  are varied accordingly. This paper designs a thermal-electric coor-

dinated control algorithm to fulfill the three important tasks of accurate electrical power 

tracking, rapid thermal power recovery, and system pressure safety [2-3]. Its mathe-

matical model can be expressed as: 
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 (9) 

where PTK , ITK , PBK , IBK , PHK , IHK , K  and cT  are the control system regula-

tory parameters. SP , SPP  and SPm represent main steam pressure, electric power and 

heat supply extraction flow settings, respectively. 

2.3 Output Variable Constraints of Control Process 

Considering the safety and stability of the operation of the CHP unit, the fluctuation 

range of the output variable process value and the error range of the steady-state value 

in the control process cannot exceed the allowable limit, and the following constraints 

should be met: 

 

 

 

 

SP t

P SP H P

m SP H m

t

P P t

m m t

      

    

    

 (10) 
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 (11) 

where  , P , and m  represent fluctuation ranges of the main steam pressure, 

the electric power and the heat supply extraction flow, respectively.  , P , and m  

represent error ranges of the main steam pressure, the electric power, and the heat sup-

ply extraction flow, respectively. 0t  and ft  represent the starting and final of the opti-

mal control process, respectively. 

3 Hybrid Optimization Strategies of Dynamic Optimization 

Problems 

3.1 Optimization Proposition Construction 

Performance Objective Function. To ensure the accurate, fast and stable variable load 

regulation in the control process of CHP units, the mathematical form of the combina-

tion of the control variable and output variable is selected as the objective function of 

optimal control performance, which is described as follows: 
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       f

0

2
22 *

,
min 1

t

tu y
J t t t dt     R S

u u y y  (12) 

where 
*

y  is the set value of the output variable;  ty  is the measured output of the 

control object at the 1t  -th moment as the feedback of the closed-loop system at the 

t -th moment; 
2|| ( ) ( 1) ||t t 
R

u u  minimizes the smooth change of the control varia-

ble; R and S are positive definite weighting matrices. In the model, u  is the control 

variable, T B H=[ , , ]TV V Vu ; y  is the output variable, t H H[ , , ]TP my . 

Model Constraints. The model constraints are the CHP unit mechanism model, the 

multivariate coordinated control model, and the control process output variable con-

straints, as described in Sections 2.1 to 2.3. 

Boundary Constraints. In the time period  0 f,t t , the CHP unit completes the varia-

ble load regulation. The initial and termination states of each control variable and output 

variable are presented as follows: 
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 (14) 

where 
0 0 0

t H H( , , )P m  and 
f f f

t H H( , , )P m  are the output values at the start and end times, 

respectively; 
0 0 0

T B H( , , )V V V  and 
f f f

T B H( , , )V V V  are the control values at the start and end 

times, respectively. 

Path Constraints. Due to the constraints of the CHP unit's component attributes, TV , 

BV , and HV  must meet the following constraints in the variable load regulation process. 

 

min max

T T T

min max

B B B
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H H H

( )

( )

( )

V V t V

V V t V
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where 
min

TV  and 
max

TV  are the minimum and maximum values of the variation of 

the turbine regulator opening, respectively; the definitions of variables in BV  and HV  

are the same as those in TV . 

The CHP unit variable load optimal control problem can be stated as a dynamic op-

timization problem in terms of DAEs as follows: 
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 (16) 

where x  is the state variable, d H z f[ , , , ]TP V x ; F  is the dynamic model of 

CHP unit DAEs, corresponding to Eq. (1) to Eq. (8); Eg  and IEg  are the equal and 

unequal path constraints, corresponding to Eqs. (9), (10) and (15); Eh and IEh  are the 

final value constraints at ft , corresponding to Eq. (11); and the initial and termination 

boundary of the state variable x  are calculated by Eqs. (13) and (14). 

The dynamic optimization problem shown in Eq. (16) is discretized to generate a 

nonlinear planning problem, which can be solved directly by the SQP method [10]. 

However, in the application of the optimal control problem, selecting the Legendre-

Gauss (LG) points less will cause the result of poor accuracy. Selecting LG point more 

will lead to the calculation of the amount of exponential growth. Although the direct 

shooting method can avoid the above drawbacks, its global search ability is poor. Se-

lecting the initial value of the variable improperly often leads to the problem being 

trapped in local minimization. 

To tackle these issues, hybrid serial optimization is employed by combining the di-

rect shooting method and the Gauss pseudospectral method. The direct shooting method 

is used to compute the optimal exact solution. The Gauss pseudospectral method com-

putes the strategy's initial solution. The hybrid optimization strategy combines the ben-

efits of both methods. It has a faster convergence rate, a higher solution accuracy, and 

less reliance on the initial values of the variables. 
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3.2 Gauss Pseudospectral Method Calculates Feasible Initial Solutions 

Time Domain Transformation. The time interval of the optimal control problem is 

0 f[ , ]t t , which is transformed [-1,1]  using the Gauss pseudospectral method. The for-

mula is as follows: 

 f 0

f 0 f 0

2
=

t tt

t t t t





 
 (17) 

where   is the dimensionless time in [-1,1] . 

Discretization of State and Control variables. In order to utilize a function to approx-

imate the state variables, K  LG collocation points ( ( 1,2, , )i i K  ) and 0 1    

are chosen as discrete nodes to form the 1K   Lagrange interpolating polynomial basis 

functions (  ( 0,1, , )iL i K  ). 

        
0

K

i i

i

L   


 x X X  (18) 

  
 
 0,

=
K

j

i

j j i i j

L
 


  




  (19) 

The Lagrange interpolating polynomial  ( 1,2, , )iL i K   are used as basis func-

tions to approximate the control variables. 

        
1

K

i i

i

L   


 u U U  (20) 

  
 
 1,

=
K

j

i

j j i i j

L
 


  




  (21) 

Discretization of Terminal State Constraints. The terminal state is represented as an 

integral form of discrete state variables and control variables, and then Eq. (22) can be 

approximately obtained by the Gauss integral. 

  f 0

f 0 0 f

1

, , ; ,
2

K

k k k k

k

t t
F t t 




  X X X U  (22) 

where  
1

1
=k kL d  

  is the Gaussian weight and k  is the LG collocation point. 
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Transformation of Dynamic Differential Equation. The derivative of Eq. (18) is first 

performed and then the time discretization points are brought into the equation to obtain 

the derivative formula of the state equation as shown in Eq. (23). 

          
0 0

K K

k k i k i ki i

i i

L D    
 

   x X X X  (23) 

where the differential matrix ( 1)K K D R  is defined by Eq. (24). 

  
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K

k jK
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l l i
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 
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 

 

 
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

 







 (24) 

Eq. (23) is substituted into the discrete expression of the state constraint in Eq. (16) 

at the collocation points. 

  f 0

0 f

0

, , ; , 0
2

K

ki i k k k

i

t t
D F t t




  X X U  (25) 

where 1,2, ,k K  , 0,1, ,i K  ,  k kX X  ,  k kU U . 

Objective Function. In the objective function, the output variable t H H[ , , ]TP my  

can be transformed from Eqs. (1)-(8) into an expression about the state variable 

d H z f[ , , , ]TP V x . Using Gauss integration to approximate the integral term of the 

objective function Eq. (12) in the optimal control problem. The approximate objective 

function in discrete form is obtained as: 

    
f

0

f 0

1

, ,
2

Kt

k k k
t

k

t t
J F dt F




   x u X U  (26) 

3.3 Direct Shooting Method Calculates Ideal Exact Answers 

The direct shooting method is a parameter optimization method that solely uses discrete 

control variables [10]. It discretizes the time-continuous optimum control problem to 

transform the original problem into a nonlinear programming problem. Then discretizes 

the continuous time into K  segments according to Eq. (27). 

 0 1 2 fKt t t t t      (27) 

The design variables are the relevant control variables on the discrete-time nodes 

from Eq. (28). The values of the control variables across nearby time nodes can be 

determined via cubic spline interpolation. 
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  1 2, , , Ku U U U  (28) 

After generating a set of design variables, the control variables are obtained through 

interpolation, and then the state equation is integrated to obtain the state variables, 

which can be used to solve the objective function and constraint equation. For solving 

optimization control problems, only the end time and control variables need to be used 

as design variables together. The discrete-time format is determined by the relative in-

dependent variables of the specific model equations, which can be actual time, dimen-

sionless time, and energy parameters. A discrete-time process is a dynamic process in 

an optimization process. 

Through the above process, the CHP unit variable load optimal control problem is 

discretized into a nonlinear programming problem in the form of algebraic constraints. 

The objective function (Eq. (26)) is minimized by solving the discrete control variables 
u . At the same time, the state constraint equations (Eq. (25)), terminal state constraints 

(Eq. (22)), boundary condition constraints (Eqs. (13)-(14)), and inequality path con-

straints (Eq. (15)) are satisfied. 

4 Simulation results analysis 

4.1 CHP Unit Variable Load Simulation Scenario 

In this article, the parameters of the extraction CHP unit under various working condi-

tions in [5] are utilized for modeling and simulation analysis. The unit's control system 

parameters are provided in Table 1. Table 2 displays the case data of the unit's variable 

load demands that are common in integrated energy system applications. The unit 

startup takes 300s to adjust. The adjustment time of the variable load control process 

from the initial value to the terminal value is 300s. 

Table 1. CHP unit control system parameters. 

T
V  control parame-

ters 

B
V  control parame-

ters 

H
V  control parame-

ters 
Other parameters 

PT
= -0.9K  

PB
= 0.1K  

PH
= 0.01K  = 0.5K  

IT
= -1K  

IB
= 0.01K  

IH
= 10K  

c
= 15T  

Table 2. Cases of variable load demand of CHP unit. 

Case 
Initial value 

( 0 0 0

H t H
, ,P ψ m ) 

Terminal value 

( f f f

H t H
, ,P m ) 

Case 1: Heating condition downward step (250,16.67,400) (220,16.67,400) 

Case 2: Heating condition upward step (230,16.67,380) (260,16.67,390) 

Case 3: Pure condensation condition downward 

step 
(260,16.67,0) (230,16.67,0) 
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4.2 Simulation Results and Analysis 

Validity Analysis of Simulation Results. The output curves and control trajectories of 

CHP unit from start-up to operation and then to variable load in different cases are 

shown in Fig. 1. Under heating condition (Case 1, Case 2), the simulation results of this 

paper are basically consistent with the output variable curve and control variable tra-

jectory obtained from literature [11] (simultaneous optimization solution), indicating 

that the hybrid optimization strategy proposed in this paper is feasible. Under pure co-

agulation condition (Case 3), the results obtained by the two optimization algorithms 

are also the same. In three types of variable load cases, the CHP unit load can be stably 

and accurately adjusted to the required indicator value, and all have achieved the opti-

mal control effect. The data shows that the proposed optimization strategy has good 

adaptability to different operating conditions and varying load demands throughout the 

entire simulation time domain. 

Analysis of Computational Performance Indicators. Under different operating con-

ditions and variable load demands, the data in Table 3 shows that the optimal control 

terminal values of Gauss pseudospectral method and hybrid optimization strategy are 

almost the same. However, the number of iterations and time consumed for solving 

differ significantly. Hybrid optimization can reduce the difference between the initial 

value and the optimal solution, allowing it to swiftly converge to the optimal solution. 

Refer to Case 1, compared to solving by the Gauss pseudospectral method alone, the 

terminal value of the hybrid optimization strategy solution (219.9, 16.67, 399.6) is 

slightly lower than the demanded value (220, 16.67, 400). However, computation time 

is shortened by about 32% while the number of iterations is about 26%. The feasibility 

errors are within the calculation requirements. 

Table 3. Computational performance of different methods. 

Case Indicators Gauss pseudospectral method 
Hybrid optimization 

strategy 

Case1 

Solution time 3.05s 2.01s 

Iterations 59 40 

Feasibility error 5.34×10-12 1.51×10-10 

Terminal values (220,16.67,400) (219.9,16.67,399.6) 

Case2 

Solution time 3.31s 2.12s 

Iterations 65 45 

Feasibility error 5.52×10-12 1.66×10-10 

Terminal values (260,16.67,390) (260,16.67,390.1) 

Case3 

Solution time 2.88s 1.35s 

Iterations 54 32 

Feasibility error 5.81×10-12 1.72×10-10 
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(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

Fig. 1. Results of dynamic optimization of unit variable load process under different conditions. 
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5 Conclusion 

In this paper, the dynamic optimization problem of load control process for CHP units 

was investigated by combining the Gauss pseudospectral method and the direct shoot-

ing method. The simulation results indicate that the serial hybrid optimization method 

can rapidly and accurately plan out the change curves of output variables and the tra-

jectories of control variables of CHP units, guiding the actual operational control of 

CHP units. Furthermore, it provides a solving approach for other optimization control 

problems. 
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