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Abstract. With the proposal of carbon peak and carbon neutrality tar-
gets and the construction of a new power system, improving energy ef-
ficiency and reducing carbon emissions have become the key to the sus-
tainable development of industrial boiler generator sets. However, the
current load scheduling of gas boiler power plants is mainly based on
manual experience, which limits achieving more efficient and stable op-
eration. Accurate short-term load forecasting can help dispatchers to
make reasonable production schedules. Therefore, this paper proposes a
hybrid load forecasting model for generator sets based on convolutional
neural networks combined with long short-term memory networks. First,
the Isolation Forest algorithm eliminates anomalies in the historical data
set. Then, variables related to unit load are selected by combining mech-
anistic analysis with the Spearman algorithm. Considering the multiple
operating conditions and high complexity of unit loads, the CNN-LSTM
network is used to fully extract the spatial and temporal characteristics
to build the load prediction model. Finally, experiments are conducted
using actual production data, showing that the proposed method is ef-
fectiveness.

Keywords: Load prediction · Long- and short-term memory networks
· Convolutional networks · Hybrid models.

1 Introduction

As people’s living standards continue to rise, so does energy consumption. How-
ever, boiler generator sets in power plants generally suffer from low operating
efficiency and frequent load fluctuations. Research on load prediction for gener-
ator sets is essential for the rational scheduling of power plant operations and
is fundamental to ensuring the safe and efficient operation of the units. With
the development of artificial intelligence and big data technologies, more and
more researchers are using actual industrial processes, analysing large amounts
⋆ Corresponding author: Jie Hu (hujie@cug.edu.cn).
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of historical data combined with process mechanisms, and employing intelligent
methods to study load forecasting for boiler generator sets and explore their
patterns.

The choice of load prediction model method is crucial for the model’s ac-
curacy. The gas boiler combustion and power generation process is a complex
industrial process, and some scholars have approached it from a mechanistic
perspective. In [1], by analysing the principles of the thermodynamic process
of turbines, transfer functions were used to characterise the properties of high-
pressure cylinders, reheaters and low-pressure crossover tubes. This study intro-
duced the natural over-tuning coefficient of high-pressure cylinder performance
and improved the data model of reheat condensing steam turbines. Wang et al.
considered the influence of thermal storage effects on the turbine power gener-
ation process and established a mathematical model for drum boiler units [2].
However, these models require the determination of numerous transfer function
coefficients and do not consider the coupling effects between variables in the
combustion and power generation process or the complexity under different op-
erating conditions. Therefore, these methods have little general applicability.

Based on the large amounts of data stored from actual industrial processes,
data-driven modelling methods are increasingly used in unit load forecasting re-
search. These methods are based on the data itself and do not require an in-depth
understanding of the physical and chemical processes of the system. They can
learn patterns, extract features from historical data, and handle extensive, com-
plex, high-dimensional data for future predictions. Kong et al. improved ARIMA
using wavelet transformation to build a short-term load forecasting model for
thermal power plants [3]. Zhao et al. proposed using the SVM algorithm for
unit load forecasting, which performs load forecasting under various operating
conditions but shows poorer forecasting results when data fluctuations are sig-
nificant [4]. Dong et al. investigated short-term load forecasting using LSTM and
recurrent neural networks, respectively, and achieved good results during load
fluctuation processes [5].

Single models have certain limitations in unit load forecasting. When faced
with complex non-linear relationships and temporal features, they may need
to more effectively capture the intricate characteristics of multi-dimensional
data, thus compromising prediction accuracy. Combined models have become
the mainstream trend in load forecasting [6-7]. For example, in [8], a combined
CNN-GRU model was used to predict the electricity load in a specific region,
achieving a high overall prediction accuracy and demonstrating the advantages
of combined models.

These methods have achieved good results in load forecasting. However, in
natural industrial environments, sensors are subjected to high-frequency use,
high temperature and high noise, which can lead to anomalies in the collected
data. These anomalies reduce the quality of the data and thus affect the accu-
racy of the constructed models.

The model uses the CNN for its ability to extract spatial features from data
[9-10], and the LSTM model to capture the temporal relationships of these fea-
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tures over time. This combination gives the hybrid model more powerful feature
representation and prediction capabilities. First, the isolation forest algorithm is
used to detect and eliminate anomalies in the actual production data. Then, cor-
relation analysis methods are used to determine the inputs for the CNN-LSTM
model based on an analysis of the process mechanism. Experimental results show
that the proposed method is effective and matches well with the generator sets’
actual production and operation processes.

2 Process Analysis and Prediction Strategy Design

This section describes the gas boiler combustion and power generation process,
analyses the factors affecting the unit load, and finally designs a load forecasting
scheme.

2.1 Process Description

Fig. 1 is a system diagram of a 150 MW ultra-high-temperature gas-fired sub-
critical boiler generator set in a power plant. The whole system can be divided
into four main conversion modules: fuel-steam module, steam-pressure module,
pressure-power module, and flue-gas-air module. It consists mainly of the blower,
air preheater, steam drum, superheater, reheater, economizer, induced draft fan,
furnace, stack, and unit.

For the gas boiler combustion and power generation process, it is essential
first to understand the mechanism of high-temperature flue gas generation and
then further analyse the circulation process of high-temperature flue gas. The
generation of high-temperature flue gas requires fuel and oxygen, which are sup-
plied by fans. These fans typically include primary and secondary air fans. In
order to simplify the analysis, primary and secondary air will be discussed. The
primary role of the primary air is to carry the fuel into the furnace and to provide
the oxygen required for fuel combustion. The primary role of the secondary air is
to provide additional oxygen to the furnace to ensure that the fuel burns entirely
within the furnace, producing a large amount of high-temperature flue gas. This
high-temperature flue gas passes through the superheater and reheater to heat
the steam that drives the turbine, allowing the generator to produce electricity
and meet the load requirements of the unit.

During this process, some high-temperature flue gas is discharged to the
boiler exhaust with the steam. To avoid wasting this energy, the flue gas from
the boiler exhaust is usually routed to the air preheater. The air preheater uses
this high-temperature flue gas to heat the secondary air, and part of the primary
air is injected into the furnace, thereby recovering the high-temperature flue gas
and preheating the air.

2.2 Factors Affecting Unit Load

Load is a critical state parameter in the gas boiler power generation process.
Accurate prediction of load variations is essential to ensure stable unit operation
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Fig. 1. Process flow diagram

while quickly meeting dispatch targets and improving energy efficiency. How-
ever, the power generation process of boiler units is complex and characterised
by strong coupling, non-linearity, and multiple parameters. As a result of this
complexity, many factors affect the load of gas boiler generator sets, the most
important of which are environmental conditions and operating parameters.

When analysing the mechanisms and power generation characteristics, fuel
quality and ambient temperature directly affect the unit load. Fuel quality de-
termines the efficiency of combustion and the amount of power generated. High-
quality fuel can provide a more stable energy output, thereby maintaining load
stability. Ambient temperature affects the heat exchange efficiency of the gas
boiler and the cooling system’s performance. At higher temperatures, the heat
generated inside the boiler is more easily lost to the external environment by ra-
diation and convection, and the temperature of the cooling water also increases,
resulting in poorer cooling performance and reduced overall thermal efficiency.
In addition, changes in ambient temperature affect the power demand, which
indirectly affects the unit load.

Operating parameters such as steam pressure, temperature, and feedwater
flow rate directly impact the unit’s operating status. Steam pressure and temper-
ature must be maintained within optimum ranges to ensure efficient and stable
power generation. In addition, the feedwater flow rate must be precisely con-
trolled to maintain a stable steam supply. The stability of these parameters is
critical to maintaining a stable load. Using artificial intelligence and data mining
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techniques, it is necessary to develop load forecasting models based on analysing
their process mechanisms and characteristics. These models can ensure a rapid
response to changes in these parameters, thereby maintaining stable operation.

2.3 Unit Load Forecasting Strategy Framework

Considering that the unit’s power generation process is influenced by multi-
ple parameters and the load frequently fluctuates, this paper proposes a load
forecasting strategy based on CNN-LSTM. The predictions obtained from this
method provide decision support for load scheduling and adjustment. The archi-
tecture of the load forecasting strategy is shown in Fig. 2.

Historical database

Abnormal data detection and rejection

Spearman correlation analysis

CNN-LSTM model

Generation load of the unit

High-quality data

Psteam Fsteam Preheater Pwater Twater Fwater Tfan Tfurnace

Prediction

Fig. 2. Prediction strategy architecture

First, relevant parameter data is obtained from the historical database of
the gas boiler unit’s power generation process. Due to external environmental
factors or sensor hardware issues, the collected data set may contain anomalies.
Therefore, the isolation forest model detects and eliminates these anomalies.

Next, to address the issue of excess process parameters, the Spearman cor-
relation analysis is used to calculate the correlation between process parameters
and unit load. Variables most correlated with load changes are selected as inputs
to the model, thereby reducing data redundancy and dimensionality. Considering
that during actual unit operation, the load is influenced by factors such as fuel
quality and production scheduling, resulting in frequent changes in load mag-
nitude and frequency, a combined CNN-LSTM model is used for model. This
approach can better extract temporal and spatial features from the data, im-
proving the model’s accuracy.

Finally, during the experimental testing phase, actual process data are fed
into the trained model to predict the gas boiler unit’s power generation load.
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3 Load Prediction Model Based on CNN-LSTM

This section presents the load forecasting model based on CNN-LSTM. The
isolation forest algorithm is used for data pre-processing to improve data quality.
Next, the Spearman method performs correlation analysis on the parameters to
determine the model inputs. Finally, the CNN-LSTM model is utilized to develop
the load prediction model.

3.1 Abnormal Data Removal Based on Isolation Forest

Due to the high temperature, high noise, and poor equipment operating environ-
ment during the power generation process of gas boiler units, a small amount of
abnormal data is likely to appear. These data cannot represent the normal oper-
ation process and will significantly impact subsequent modelling and prediction
if not processed. Therefore, detecting and eliminating abnormal data through
data pre-processing technology is necessary to obtain high-quality data.

The isolation forest algorithm is used to detect anomalous data in the power
generation process. This algorithm is an unsupervised anomaly detection method
that constructs multiple isolated binary trees in a randomised manner [11], allow-
ing outliers to be split with only a few partitions, making it simple and efficient.
Compared to the KNN method [12], the isolation forest is not affected by the fail-
ure of distance measurement in high-dimensional spaces, thus avoiding the curse
of dimensionality. Similarly, the LOF method relies on density estimation [13],
which can become inaccurate in high-dimensional data. The PCA-based method
reduces the data dimensions to simplify the analysis [14], which can lead to the
loss of important information. In contrast, the Isolation Forest does not require
dimensionality reduction, providing greater adaptability and robustness.

In addition, the isolation forest does not need to assume any data distribu-
tion. In contrast, the GMM assumes that the data follows a Gaussian distri-
bution [15], which may need to be revised for actual power generation process
data. Therefore, the isolation forest algorithm is ideal for anomaly detection in
complex data environments.

The structure of the isolation tree constructed by the isolation forest is shown
in Fig. 3. Calculate the average path length c(n) for all data points in the isola-
tion forest, and then compute the anomaly score s(x, n) using the formulas (1)
to (3).

S(x, n) = 2
−E[H(x)]

c(n) (1)

H(n) = lnn+ c (2)

c(n) =

2H(n− 1)− 2(n−1)
n , n > 2

1, n = 2
0, n < 2

(3)

where E[H(x)] is the expected value of h(x), h(n) is the harmonic function, c is
the Euler constant, in s(x, n), x is the number of data and n is the sample size,
the S value range is [0,1], and the abnormal score of normal data is about 0.5.
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Fig. 3. Isolated forest structure

More than 40 parameters must be measured in the power generation process
of gas boiler units, which are typical high-dimensional data, mainly including
condition and operating parameters. The parameters that affect the unit load
include: central steam pressure (Psteam), main steam flow (Fsteam), reheater
pressure (Preheater), feed water temperature (Twater), feed water flow (Fwater),
furnace outlet flue gas temperature (Tfurance), etc. Considering the parameters
are detected simultaneously, the central steam pressure and reheater temperature
are selected as representative for abnormal data detection and elimination, and
a box plot is given.

3.2 Spearman Correlation Analysis

Based on the abnormal data detection and elimination method, a large amount
of high-quality actual production data was obtained, including 47 process pa-
rameters such as central steam pressure, primary steam flow rate, main steam
temperature, reheater pressure, reheater temperature, feed water pressure, feed
water flow rate, feed water temperature, furnace vacuum, and so on.

Therefore, this paper selects the Spearman correlation analysis method to
measure the correlation between process parameters and unit load. The absolute
value of the calculated correlation coefficient is between 0 and 1.

The formula for calculating the Spearman correlation coefficient is as follows:

ρ =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)
2 ∑

i (yi − ȳ)
2

(4)

where x and y represent the two columns of features for which the correlation
coefficient is to be calculated, xn and yn represent the corresponding features in
the nth sample, x̄ and ȳ represent the mean of the features.
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3.3 Prediction Model Design

The power generation process of gas-fired boilers involves many parameters and
complex data, and prediction accuracy needs to be improved. The neural network
prediction model based on LSTM performs well in processing time series and has
been applied in many fields.

Since LSTM has shortcomings in learning cross-features, it is not easy to ef-
fectively process high-dimensional data in unit load prediction. Considering that
convolutional neural networks (CNN) can extract features efficiently, this paper
adopts a CNN-LSTM combined model for unit load prediction to exploit both
models’ advantages fully. The structure of the CNN-LSTM prediction model is
shown in Fig. 5.
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Flatten layer

Dropout layer

LSTM layer

Full 

connectivity 

layer

Output layer

…

Psteam

Tfurnace

Fsteam
Unit 
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Fig. 4. Structure of CNN-LSTM forecasting model

4 Experimental Results and Discussion

This section introduces the evaluation indicators for evaluating the model’s per-
formance and conducts simulation experiments using actual gas boiler unit pro-
duction data.

4.1 Evaluation Indices

In practical applications, the performance indicators of the calculation model
must be used to evaluate the model’s performance. This paper selects the root
mean square error (RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), and coefficient of determination (R²) as the model per-
formance evaluation indicators. The calculation formula is as follows.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (5)

MAE =
1

N

N∑
i=1

(yi − ŷi) (6)
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MAPE =
100

N

N∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣ (7)

R2 = 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − ȳi)
2

(8)

where yi is the true value of the unit load, N is the number of test sets, ŷi is the
predicted value, and ȳi is the average value of the test sets.

RMSE, MAE and MAPE are the errors that represent the existence of pre-
dicted and actual values, and the smaller the value, the better the performance
of the model built, while the closer the value of R² is to 1, the better the model’s
ability to explain the data.

4.2 Experiments Based on Actual Production Data

To verify the effectiveness of the proposed method, a total of 6500 data sets from
the operation process of a power plant from February to October 2023 were used,
of which 6000 sets were used as training sets, and 500 sets were used as test sets.
The isolation forest algorithm was used to detect and remove abnormal data
in the 6000 data sets, and a total of 501 data sets were removed. Fig. 6 shows
two parameter box plots before and after the isolation forest algorithm, where
the purple box is the data before removal, and the orange box is the data after
removal. It can be seen from the box plot that the number of outliers has been
significantly reduced, and the data quality has been effectively improved.

Before After

0

5

10

15

V
al

ue
s

Main steam pressure

Before After

200

300

400

500

600

V
al

ue
s

Rehearter temperature

Fig. 5. Box plot comparing before and after removing outliers
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Using the data processed by the isolation forest algorithm, the Spearman
correlation coefficient between the process parameters and the unit load is calcu-
lated, as shown in Table 1. The variables with the highest correlation coefficient
values are listed, among which the correlation coefficient values of central steam
pressure, main steam flow, reheater pressure, feed water pressure and feed water
flow with the unit load are all over 0.85, which proves that these five parameters
have a strong correlation with the unit load, which is consistent with the process
mechanism of gas boiler combustion power generation process. This paper se-
lects variables with correlation coefficient values greater than 0.6 as the model’s
input, and the output is the unit load.

Table 1. Correlation coefficient value

Psteam Fsteam Preheater Pwater

Unit load 0.8399 0.9157 0.9155 0.8655
Twater Fwater Tfan Tfurnace

Unit load 0.8292 0.9065 0.6341% 0.7476

From Table 2, it can be observed that the performance of the combined
model surpasses that of the individual models. The proposed CNN-LSTM-based
method achieves RMSE, MAE, MAPE, and R² values of 5.1859, 4.7311, 3.2871%,
and 0.8225, respectively. These metrics indicate that the prediction errors for the

Table 2. Comparative results for different models

Model RMSE MAE MAPE R2

CNN 7.0496 6.0482 4.3188% 0.6720
LSTM 6.4884 5.2952 3.7414% 0.7222

CNN-LSTM 5.1859 4.7311 3.2871% 0.8225

load are relatively small, confirming the effectiveness of the proposed method.
Thus, it is demonstrated that the model can largely meet the requirements for
industrial on-site applications.

As can be seen from Fig. 7, the CNN-LSTM prediction curve fits better, and
the prediction results are more reliable. In this paper, outliers are detected and
removed from the training set using the isolated forest algorithm, and the data in
the test set is not pre-processed because it is difficult to avoid the generation of
easily abnormal data in the actual production process, and the results obtained
are more in line with the actual industrial site.
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Fig. 6. Unit load prediction results based on different models

5 Conclusion

The power generation process of gas boiler units has the characteristics of solid
coupling, multi-parameter and non-linearity. This paper develops a unit load pre-
diction model based on CNN-LSTM, which cannot only describe the unit power
generation process’s characteristics but also solve the problem of modelling the
unit power generation process. The experimental results show this model has
better prediction accuracy than the individual LSTM and CNN models. The
proposed strategy meets the site’s needs and lays the foundation for the optimi-
sation control of the unit power generation process. For future explorations, the
use of hybrid modelling approaches to modelling can be investigated to improve
the accuracy and stability of the model.
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