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Abstract. To enhance the tactical planning capabilities of air defense systems,
this paper develops a mathematical model for the coalition formation problem
involving defense and control resources. Given the uncertainty in task scenarios
and the high demand for rapid solutions, a multi-round auction algorithm,
inspired by the British auction model in auction theory, is proposed. This
algorithm is tailored for the formation of large-scale, heterogeneous, multi-
agent coalitions. It improves task efficiency, optimizes the utilization of internal
resources, and effectively addresses various potential threats. Through
simulation experiments, a comparison with the integer linear programming
method demonstrates that the proposed multi-round auction algorithm
outperforms in key metrics such as total battlefield coverage, coalition stability,
and other relevant indicators.
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1 Introduction

As real-world tasks grow increasingly complex, it becomes challenging for a single
agent to complete a task independently without incurring significant costs. Multi-
Agent System (MAS) [1] is widely applied to handle complex tasks in diverse
domains, such as rescue operations, military reconnaissance, and strike missions [2].
The first prerequisite for accomplishing these tasks is to consider how to unite
multiple agents to perform a certain task together, i.e., how to decompose the overall
task and assign it to each of the agents to ensure efficient collaboration among them,
i.e., forming a coalition. In MAS, Coalition Formation (CF) is an important problem
for assigning different tasks.

According to [3], there are three main categories of coalition formation methods:
centralized methods, self-organized (swarm intelligence) methods, and auction
methods.

In centralized systems, a central authority is responsible for decision-making, often
employing techniques like linear programming or heuristic search graphs to find
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optimal or near-optimal solutions [4]. While the architecture is simple and easy to
implement, allowing for global problem-solving, it has limitations such as high
communication demands on the central node, bandwidth requirements, computational
load, and poor scalability [5-6]. Centralized approaches are more suitable for
scenarios that are relatively simple, stable, small in scale, and where real-time
performance is not critical but optimal task allocation is.

The swarm intelligence, also known as self-organizing approach, operates without
a central node, relying instead on the interaction of simple behaviors from individual
agents to generate overall system behavior [7]. Moritz et al. [8] explored a specific
case of self-organizing reconfigurable agents engaged in resource gathering,
demonstrating that group cooperation benefits all members and that optimal group
size is influenced by environmental factors. Literature [9] employed a dynamic ANT
federation technique f within a memetic algorithm to efficiently determine the optimal
number of robots for timely task completion. While these methods are well-suited for
dynamically changing environments and unexpected scenarios, they are limited in
their ability to handle highly complex problems.

Auction algorithms, often used in market-based approaches [10], are popular due
to their low computational complexity and high operational efficiency [11]. These
methods are particularly suitable for distributed systems, with theoretical support
indicating that bidders can achieve optimal task allocation [12]. Tang et al. modeled
and simulated the search behavior of rescuers in disaster relief [13]. An auction-based
cooperative rescue scheme was proposed to form coalitions and improve the overall
performance of search and rescue efforts. Irfan et al. [14] proposed an auction-based
scheme to address dynamic coalition formation in which the capabilities of coalition
members can be varied and reduced at a particular stage，where coalition members
with insufficient capabilities can be auctioned and replaced to meet mission
requirements.

However, existing research has focused less on large-scale operations (where the
number of resources exceeds 3000), despite the fact that real-world air defense system
deployments often involve large-scale scenarios. These environments are
characterized by a high volume of incoming targets and rapidly changing battlefield
conditions, making time-efficiency more critical than absolute accuracy. Given that
coalition formation is a key component of task execution in MAS and is an NP-hard
problem, this paper proposes an improved multi-round auction algorithm to address
the coalition formation challenge in large-scale scenarios, aiming to balance rapid
response with optimal outcomes.

2 Problem Formulation

2.1 Problem Description

Before forming a coalition, our resource contains a total of M coalitions and N agents
to be grouped, and the set of all the agents to be assigned is T, which contains ZH
command-type agent, TC detection-type agent, and ZX task-execution-type agent.
Each detection-type agent has attributes such as position, orientation angle, detection
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distance, detection angle, etc., which together determine the capability zone of
detecting agent; and each task-execution-type agent has attributes such as position,
striking radius, amount of bullets, etc., which together determine the capability zone
of task executing agent.

Let the formed coalition i contains hi command-type agents, ci detection-type
agents and vi task-execution-type agents. According to the detection angle and
detection distance of the detection-type agents, the capability zone of each detection-
type agents in coalition i is written as {Areatc(detect1),…,Area tc(detectci)}. Similarly,
based on the location and strike radius of the task-execution-type agent, the capability
area of each task-execution-type agent in coalition i is denoted as
{Areazx(execute1),…,Area zx(executevi)}.
2.2 Decision Variables

The decision variable is a binary matrix X where the data in the ith row represents the
membership of the ith coalition. xij=1 indicates that the jth agent is a member of the ith
coalition, while xij=0 represents that the jth agent is not a member of the ith coalition.
2.3 Objective Function

Considering the single-agent effectiveness and the global effectiveness of the overall
coalition, there should be a reasonable mapping relationship between the coalition's
selection of agents with the aim of maximizing the effectiveness of individual agents
and the coalition's formation with the overall goal of allocating all agents to the
coalition to maximize the system profit. Let the system profit of which is the sum of
the individual profits of all coalitions, described in mathematical language as equation
(1).
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where the system profit { | 1, 2, ..., , 1, 2, ..., }ij i M j N    , can be regarded as

the difference between the allocated revenue rij and the quoted cost cij. The process of
defining the revenue and cost of each agent is equivalent to defining the multi-
objective optimization metrics in a combinatorial optimization problem, whose
specific mathematical expressions will be presented in Section 3.1.
2.4 Restrictive Condition

In order to avoid the confusion of control authority, each agent can only be
attributed to one coalition, thus ensuring the order and efficiency of task allocation
within the coalition in the war, and obtaining the resource attribution constraints of
the agents:
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In order to ensure that after a mission is assigned to a coalition, the coalition has
the ability to command the internal nodes to detect and strike the target, the coalition
needs to have both command-type, detection-type, and task-execution-type agents:

1

1

1

1, 1, 2, ...,

1, 1, 2, ...,

1, 1, 2, ...,

ZH

ij
j

ZH TC

ij
j ZH

N

ij
j ZH TC

x i M

x i M

x i M





 

  

  

  

  

















(3)

2.5 Evaluation Indicators

It is necessary to judge the goodness of coalition formation from certain evaluation
indexes. Most of the previous researches have adopted the generalized calculation
method [15], and there are also some practical problems that will propose special
characteristic functions according to the application scenarios [16]. Based on the
specificity of the battlefield environment, this subsection proposes four evaluation
indicators from the perspective of how beneficial the allocation scheme is to the
execution of the strike mission.

(1) Total battlefield coverage area
In the process of pre-war planning of resources, the larger the total capacity area of

all alliances covering the battlefield, the better the coalition formation program is. The
area of the graph is calculated using binary integration to get the total area covered by
the battlefield as:
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(2) Comprehensiveness of coalition capabilities
The mathematical expression id for the comprehensiveness of coalition capabilities

is obtained by ranking the coalitions from smallest to largest in terms of the distance
between their centers and the center of the protected strongholds to form a new
coalition number:
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(3) Coalition stability
In order to prevent the OODA ring from breaking, the number of command-type

agents within the coalition should be proportional to the sum of the number of
detection-type agents and the number of task-execution-type agents, as in equation
(6).
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(4) Defense dead zone ratio
The defense dead zone rate is the ratio of the number of corners exceeding 180° in

the inner corners of the outermost edge of the overall capability zone to the total
number of corners, with a mathematical expression as in equation (7).
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3 Auction-based Algorithms for Solving Coalition Formation
Problems

The concept of auction algorithms originates from real-world economic activities and
can be categorized based on whether the auction prices are public. In auctions where
bidding information is public, such as British and Dutch auctions, all bids are
disclosed. In contrast, first-price and second-price sealed auctions keep bidding
information private. Auctions can also be classified as single-item or multi-item
auctions, depending on the number of items involved. Multi-item auctions often
require the consideration of various constraints, leading to modifications and
optimizations of the underlying model. In the context of this paper, the auction
involves all agents, with the coalitions acting as the bidders. Since the number of
agents significantly exceeds the number of coalitions, auctioning one agent at a time
would result in inefficiency. Therefore, multiple rounds are incorporated into the
traditional auction process, combined with a ϵϵ-slack complementary strategy to
enhance performance. In each auction round, each coalition selects the agent with the
highest net profit to bid on. If competition arises during the auction, the agent is
allocated to the coalition with the higher bid. Before all agents are allocated, in each
new round of the auction, the coalition's bid for the remaining unallocated agents
increases according to specific rules.
3.1 Design of Mark-up Rules for Auction

Assuming that the coalition i pays cij for the agent j, and the revenue that the agent j
can bring to the coalition is rij, then the net profit that the coalition gets after selecting
the agent is rij - cij.

If there is still an unselected agent at the end of this round of auction, the next
round of auction will be conducted according to the price update rule. First, calculate
the optimal profit of the coalition i in this round of auction according to equation (8):
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max ( ),
j itii T j ij jj Tg r c t      (8)

where j* is the ordinal number of the agent chosen by the coalition i to obtain the
optimal profit.

Then, the suboptimal profit of the coalition in this round of auction is calculated
according to equation (9):

1
max ( ),
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where *

1j is the ordinal number of the chosen agent corresponding to the suboptimal
profit obtained by the coalition i.

Finally, the  -slack complementarity strategy is used to obtain the cost offer of
each coalition for each agent in the next round of auction:

1ij j ij ij
c b g g        (10)

where *j
b is the highest bid of the agent

j
t  in the last round of auction,  is

the update step, which is a specific application of the "  - complementary relaxation"
strategy. And the purpose is to ensure that the bidding incremental, to prevent the
iterative process from falling into a dead loop [17], the size of its value is related to
the quality of the solution and the complexity of the computation, usually, the
algorithm's convergence effect is better at this time. [18].
3.2 Coalition's Benefit Function

In the auction program, the benefit function of the coalition needs to be designed, and
for the revenue brought rij to the coalition i by the joining of the agent tj, the coalition
detection capability, coalition striking capability, coalition compactness and other
factors need to be considered.

(1) Coalition detection capability
One of the sources of detection ability of a coalition lies in the detection range of

its internal detection class agents. Let ( )tc eArea t be the battlefield area that can be
detected by the detecting agent te, e=ZH+1, ZH+2,…, ZH+TC. Considering the
increment of the detecting area that the joining of the agent can bring to the coalition,
we can get the mathematical expression by using the double integration:

( ) ( ) ( )
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where ( )tcArea i is the detectable range of the coalition i.
In actual combat, if a target in the detection range needs to be intercepted, a

detection class agent needs to be designated to continuously detect the orientation and
velocity of that target, which will occupy one detection channel of that agent.
Therefore, the detection channel density is defined as the final coalition detection
capability increment function:
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where ( )echannel t is the number of detection channels of agent te. g1 is the ratio of
the number of detection channels of the agent to the incremental detection area.

(2) Coalition striking capability
The coalition striking capability comes from the concatenation of the strike range

of the task executing agents (i.e., the concatenation of the capability areas of all task
executing agents within the coalition) and the detection range of all detecting agents
(i.e., the concatenation of the capability areas of all detecting agents within the
coalition).

Let ( )zx pArea t be the battlefield area that the task-execution-agents can hit be

the battlefield area that the agents can cover, p=ZH+TC+1,…,N. The higher the
overlap between the strike area that the agent tp can cover and the detection area that
the coalition i can detect, the greater the increase in the coalition's capability area
caused by the joining of the agent, the greater the number of incoming targets that the
coalition can cover, and the greater the coalition's capability of executing the tasks in
the subsequent process. Mathematically, we use the intersection operation and the
binary integration to measure the incremental size of the mission execution capability
of the coalition i brought by the addition of agent tp:

( ) ( )

1
tc zx pArea i Area t

Overlap d


  (13)

In addition to the range overlap problem, the number of ammunition resources
carried by an agent also affects the mission execution capability of a coalition. Let

( )pAmm t be the number of munitions carried by the task-execution-type agent tp,

and define the density of munitions carried by the agents as the final incremental
function of the coalition's task execution capability:

2

( )pAmm t
g

Overlap
 (14)

where g2 is the ratio of the number of munitions carried by the agent tp to the
incremental area of the coalition's capability area.

(3) The benefit function of the coalition
Considering the above two factors, the benefit function of coalition i in choosing

agent tj is integrated as follows:

1 1 2 2ijr g g   (15)

where 1 2 (0,1],   is the two weighting coefficients with a default value of 1, with
minor parameter adjustments based on the change in importance of the detection-type
and task-execution-type agents in real-world situations.
3.3 Coalition's Cost Functions

In addition to the benefit function, the coalition also needs to consider the cost
required to shoot the smart in order to solve the payoff equation. The cost loss to the
coalition i due to the addition of the agent tj, i.e., the initial value ijc

 of the
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coalition's offer to the agent, is calculated from both the compactness and command
load perspectives of the coalition.

(1) Coalition compactness
When the average distance between agents within a coalition is smaller, i.e., when

the internal structure of the coalition is more compact, the communication cost within
the coalition will be smaller. Consider the average value of the distance between each
pair of agents within the coalition after the agent tj joins as a cost function of the
compactness of the coalition:
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where tnum is the number of agents in the coalition before tj joins.
(2) Command load
When the number of resource-type agents (all agents except command-type agents)

in the coalition is too high, the command-type agents will be overloaded, so the ratio
of the number of command-type agents to the number of detection-type and task-
execution-type agents in the coalition is considered as the command load cost
function:
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(3) Coalition’s cost function
Considering the above two factors, the cost loss of selecting agent tj for the

coalition i is integrated:

21 1
*

2ijc s s   (18)

where 1 2 (0,1],   are two weighting coefficients that weigh two different
dimensions and orders of magnitude of the cost function of coalition compactness and
command load.

In specific applications of auction algorithms, multiple considerations that are not
identical and not directly comparable are often encapsulated in the program, e.g.,
Gerkey et al. in the literature [19] used the difference between quality and cost to
compute the utility, and presupposed that the units of the two are directly comparable.
Therefore, when designing profit and cost functions that combine multiple factors, it
is usually necessary to find a reasonable set of weights between the different
considerations [20].

In this study, the informativeness weight method (coefficient of variation method)
is used to determine the values of and to determine the indicator weights based on the
amount of information contained in the indicator data, and the weights are assigned
by utilizing the coefficient of variation of the data, and the larger the coefficient of
variation, the larger the assigned weights. The steps of the algorithm include (1)
selecting the data in the subsequent validation experiment and calculating the data set
of the two indicators. (2) Calculate the mean and standard deviation of the two
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indicators: i and i . (3) Calculate the coefficient of variation: /i i iCV   . (4)

Obtain the weight values:
1i i i

m

i
CV CV


  .

3.4 Multi-Round Auction Algorithm Process

In this study, the number of agents is much larger than the number of coalitions,
which is a kind of multi-item auction, choose the British-style auction and combine
with -slack complementary strategy, use an improved multi-round auction algorithm
to study the coalition formation problem, the steps of the algorithm are as follows:

Step 1: Initialize the data of all kinds of relevant attributes of coalitions and agents;
Step 2: Each coalition solves the payoff equation, i.e., profit estimation for all the

current agents to be auctioned;
Step 3: Each coalition selects the agent with the highest profit for itself to bid;
Step 4: Allocate the agents to each coalition according to the principle of "the

highest bidder wins";
Step 5: Update the global highest bidder and the offer table of all the agents in this

round of auction;
Step 6: Update the price according to equation (10);
Step 7: Determining whether all the agents have been fully allocated, if they have

been fully allocated, skip to step 7, otherwise, repeat steps 2 to 6;
Step 8: Output the allocation result.
In each round of auction, the coalition evaluates the profit of the agent to be

auctioned by the formula in Section 3.1, selects the bidding target and makes a bid; if
more than one coalition selects the same agent, the agent is allocated to the coalition
with a higher bid; if there is no competition, the agent is allocated to the coalition that
made the bid. Since the number of coalitions is much smaller than the number of
agents, multiple rounds of auctions are needed, and at each new round of auctions, all
coalitions will raise their bids according to equation (10). The auction ends when all
the agents have been assigned.

In each round of auction, each computation for each coalition can be subdivided
into 3 steps to carry out, the first is the update of the global highest bidder with the
offer table, and then based on the computational formula in Section 3.1 to estimate the
interest of all the current unauctioned agents, to re-select the bidding target and to
update the offer price, and finally to check the iterative exit condition.

4 Simulation Experiment Validation and Analysis

4.1 Parameterization

In this paper, Matlab simulation software is used to carry out simulation
experiments.The main research content of this study is large-scale combat, in order to
avoid overloading the command class agents, consider the appropriate number ratio to
allocate the number of each type of agents. Referring to the simulation method of
literature [21], the system set our resources including 160 command-type agents, 120
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detection-type agents, 560 task-execution-type agents, 3320 rounds of ammunition,
totaling 4080 resources, the specific classification and quantity are shown in Table 1.

Table 1. Statistics on our resources.

Types of agents Range(km) Quantities Munitions carried by an agent Total
Command 160 160

Detect 50000 60

Detect 100000 60 120

Execute 5000 350 4

Execute 10000 150 8

Execute 50000 60 12 3320

4.2 Battlefield Patterns

In the actual combat environment, when deploying our resources before the battle, we
need to consider the terrain and the attack mode of the incoming target. Different
terrain will result in different attack and defense difficulties, corresponding to the
deployment of resources will be different; under different attack methods, the
intensity of the war in different areas is different, corresponding to the pre-war
deployment of resources density will be very different. In this section, three common
terrain situations and two attack methods are discussed in different battlefield
combinations.
Topographic Condition. Plain terrain conditions are easy to defend and easy to
attack, requiring multiple protective strongholds, with all types of agents scattered in
a circular pattern around the protective strongholds. In mountainous terrain, which is
easy to defend and difficult to attack, only a single protection zone is considered. In
river terrain, we define our agent resources to be distributed along the river, in order
to prevent incoming targets from crossing the border.
Incoming Target's Mode of Attack. There are two types of attacks on incoming
targets: uniform attacks and centralized attacks. In the former case, the targets are
attacking at the same time without main attacking direction, corresponding to our
agent resources should be evenly distributed; in the latter case, there is a main
attacking direction, corresponding to our agent resources should exist in the main
defense direction, to ensure that there are enough intelligent bodies to deal with the
target in the main attacking direction, and at the same time, we have to prepare for the
attacking of the target in the rest of the direction.

Figure 1 shows the battlefield distribution of uniform and centralized attack of
incoming targets in mountainous terrain as an example.
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(a) distributed attack (b) centralized attack

Fig. 1. Example of a mountainous terrain deployment model

4.3 Simulation Results

The algorithms are run under different battlefield modes respectively, and the
resultant graphs obtained are shown in Figures 2 to 4.

In mountainous terrain that is easily defensible but challenging to attack, resources
are organized into a central protective stronghold, with a map coordinate system
established around this origin. The resources of the three agents are distributed in
concentric circles around the perimeter, aligned with the direction of incoming
targets. This arrangement ensures comprehensive defense coverage with no gaps,
protecting the central stronghold effectively. The four coalitions formed provide
uniform coverage in all directions, creating a convex polygonal capability area with
minimal dead zones and enhanced overall defense. The capability zones of the four
coalitions overlap, ensuring that all zones around the stronghold intersect and secure
its defense. In the case of a centralized attack, it is crucial to allocate additional
resources in the direction of the primary threat during pre-battle deployment.

(a) distributed attack (b) centralized attack

Fig. 2. Simulation results of mountainous terrain
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(a) distributed attack (b) centralized attack

Fig. 3. Simulation results for plains terrain

Fig. 4. Simulation results of river topography

Considering the terrain characteristics of plain terrain with open view, easy to
defend and easy to attack, and needing multiple protective strongholds, two protective
centers are selected, with location coordinates of (517000.25433, 50026.74686) and (-
51090.87488, -50736.35726) respectively, and it can be seen from the simulation
results that the overall capability area is in the form of convex polygon, with fewer
defensive dead ends and There are three coalition's capability zones covering both
sides of the two protected strongholds, which ensures the degree of defense in the key
areas, and at the same time can alleviate the regional load balancing and munitions
load balancing of each coalition. In response to the characteristics of the uniform
attack, the four coalitions are more evenly distributed around the two protected
strongholds to ensure that incoming targets in all directions can be detected and
attacked. Under the centralized attack mode, the resources of the agents in the
direction of centralized attack are more intensive, and the overlapping area of
capability zones is larger in the northeastern direction where the target is mainly
attacked, which is conducive to easing the pressure of the coalition's execution of the
mission, and improving the quality and efficiency of the execution of intercepting the
target in the direction of the main attack in terms of the overall effect.
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Under river terrain conditions, resource deployment is distributed along the
riverbank line, and the core element of defense is to prevent the enemy from crossing
the riverbank line. Thinking from the enemy's point of view, it is easier to focus on
one direction of attack to hit a gap from the opponent's defense layout, so only
centralized attack is considered under this terrain condition, and the main direction of
the incoming mission is the middle part along the vertical direction of the river. From
the simulation results, it can be seen that the formed coalitions are arranged vertically
along the river bank, two by two overlapping, located in the middle of the core
position of the coalition 2 and coalition 3 area is larger, contains a larger number of
agent resources, is the main force of the overall battlefield, and cooperate with each
other to complete the main attack direction of the interception task. At the same time,
coalition 2 and coalition 3 have a large overlap area with the corresponding
neighboring coalition 1 and coalition 4, when coalition 2 and coalition 3 are
overwhelmed, the tasks in the overlap area can be assigned to coalition 1 and coalition
4, which is conducive to alleviating the regional load balance of coalition 2 and 3, and
improving the overall combat efficiency of the system.
4.4 Comparison Algorithm

In order to quantitatively analyze the auction algorithm is more advantageous in the
application scenario of this paper, the commonly used integer linear programming
method in the centralized method is chosen as the comparison algorithm, and
experiments are carried out using the same data under the five different battlefield
scenarios in Section 3.3, and the results of the two algorithms are compared by means
of the evaluation indexes proposed in Section 1.5 to run out the results of the two
algorithms. The evaluation values of the comparison algorithms are normalized as the
comparison values, and the algorithms in this chapter are used as the experimental
values, and the comparison results obtained are shown in Figure 5.

Fig. 5. Comparison chart of the two algorithms

As can be seen from the histograms of the contrasting values and the experimental
values, under the resource deployment scenarios in this chapter, the value of the total
area of battlefield coverage obtained by running this paper's algorithm is larger, the
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value of the coalition's capability comprehensiveness index is larger, the value of the
coalition stability index is smaller, and the value of the defense dead-end rate index is
lower. Therefore, the data of this comparison experiment shows that the overall
performance of the coalition formation scheme solved by the algorithm in this chapter
is better than the scheme solved by the integer linear programming algorithm.

5 Conclusion

This paper focuses on the coalition formation problem in heterogeneous multi-agent
systems, developing a mathematical model tailored to the specific characteristics of
the problem. A solution framework based on an auction algorithm is designed, with
performance evaluated through comparative experiments conducted using Matlab
simulation software. The results demonstrate the effectiveness of the proposed
coalition formation scheme, confirming that the auction algorithm has strong practical
significance.
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