
MFTCP: Multiple Factors based Test Case Prioritization

Can Cui1[0000-0003-3199-2834], Wang Zhi1, Wang Shihai2*[0000-0002-0241-0009] and Liu Bin2

1 North China Institute of Computing Technology, Beijing 100083, China
2 Beihang University, Beijing 100191, China

*wangshihai@buaa.edu.cn

Abstract. In software regression testing, reorder the test cases to ensure the mod-
ified code does not introduce new effects and keep function right. Traditional
coverage-based test case prioritization (TCP) approaches are Total and Addi-
tional. These two approaches only use code coverage as the measure to rank the
test cases. Several defect prediction-based TCP approaches integrate the defect
prediction probability and code coverage with weighting coefficients. However,
previous methods need to have a priori knowledge related to defects, which is
difficult to obtain. Therefore, we proposed an approach named MFTCP by con-
sider code coverage, defect prediction probability, and lines of code (LoC) with
automatic weighting coefficients to rank regression test cases. The experimental
results indicate the proposed method is more effective than the baselines, espe-
cially in terms of the total strategy.

Keywords: Software Testing, Test Case Prioritization (TCP), Code Coverage,
Defect Prediction (DP).

1 Introduction

When the software initial test (SIT) has been completed, the execution information of
test cases is known, i.e., the coverage and the execution results of the test cases are
obtained. Software regression testing (SRT) is used to confirm that recent program
changes have not adversely affected existing functionality, and new tests must be per-
formed to test the new functionality [1]. In white-box SRT, the popularly traditional
dynamic code coverage-based test case prioritization (TCP) techniques are Total and
Additional. However, the techniques only utilize the dynamic code coverage infor-
mation without the execution results.

At present, there are several studies that use the outputs of test cases and/or static
metrics of software program to integrate with dynamic code coverage to prioritize test
cases. For example, the Modified code coverage method [2] (Modified), Quality-aware
TEst case Prioritization (QTEP) [3], Adaptive TCP method (AdaTCP) [4], etc. These
methods use static metrics to build defect prediction models (DPMs) to achieve the
defect prediction probability (DPP) and conduct a variant object function to integrate
code coverage and prediction probability. However, these methods require the prior
knowledge of software defects (such as the number of defects in the software). Besides,
the setting of the coefficient of multiple factors (such as Modified 2]) is difficult. The

2 Cui Can and Wang Zhi

coefficient of the software is difficult to obtain and usually fixed. Different software
program has different defect distribution, which makes the fixed coefficient improper.

Therefore, multiple factors-based test case prioritization method (MFTCP) is pro-
posed. MFTCP considers DPP, software static metrics, and dynamic code coverage. In
this method, the three factors of are weighted to conduct a novel objective function.
The weighted coefficient is obtained by the performance evaluation measure of DPM,
rather than by the prior knowledge setting. In the paper, Balance is selected as one of
the coefficients. Because DPMs are varied according to different software under test
(SUT). Therefore, the Balance value changes with the change of DPM.

2 Related Works

2.1 Traditional Test Case Prioritization Approaches

Code coverage-based TCP was proposed in the early 21st century. From 1999 to 2002,
Rothermel and Elbaum published several papers to form the main framework of code
coverage-based TCPs [5][6][7]. Total and Additional strategies implemented by the
greedy algorithm are the most traditional approaches [5]. Coverage-based TCP methods
use the coverage information of source code and test cases (i.e., static code coverage
information or dynamic code coverage information), and rank test cases by maximizing
code coverage by adopting different coverage criteria [8]. The dynamic code coverage
is collected by executing the program and tracking each executed unit [9]. Commonly
used coverage criteria are statement coverage [5], function/method coverage, branch
coverage [5], block coverage, data-flow coverage, and Modified Condition/Decision
Condition (MC/DC) coverage etc.

Zhang et al. [10][11] used the probability model to merge Total and Additional into
a unified model, and proposed the Basic model and Extended model to bridge the gap
between Total and Additional. The basic idea is that “each time a unit is covered by a
test case, which can potentially detect some faults in the unit, the probability that the
unit contains undetected faults decreases by certain rate”. Experiments show that using
uniform probability values with multiple strategies can significantly outperform Total
and Additional.
2.2 Hybrid Test Case Prioritization Approaches

Total and Additional only consider code coverage, that is, the assumption is that “test
cases with higher coverage can detect more defects”. The assumption implies that “de-
fects are evenly distributed in the program”, which is obviously inconsistent with the
20:80 Rule [12][13]. Based on this, several studies [5][6][14][15] have proposed to
prioritize test cases by considering multiple factors including code coverage.

Elbaum et al. [6] considered test cost and fault severity level, and used three fault
severity levels and five test cost distributions for case application. Among them, the
linear method sets six fault severity levels, that is, the fault level value is from 1 to 6,
and the fault level value is set from 20 to25 using the exponential method.

Rothermel et al. [5] consider the ability of a test case to expose faults depending not
only on whether the test case reaches the faulty statement, but also on the probability

 Test Case Prioritization by Considering Multiple Factors 3

that the fault in the statement causes the test case to fail. This paper proposes Total
Fault-Exposing Potential coverage (FEP-total) and Additional Fault-Exposing Poten-
tial coverage (FEP-additional). Approximate FEP values of test cases are obtained us-
ing mutation analysis.

Recent studies have shown that even the optimal coverage-based TCP method does
not outperform the Additional method much in terms of fault detection rate [16]. Hao
et al. [16] argue that to improve the Additional method, some information other than
the structure coverage should be adopted. Paterson et al. [17] believe that part of the
reason may be the complexity of real faults and the assumption of coverage-based
methods. Therefore, some studies have proposed some improved methods by fusing
static metrics and test case related information [3][14].

Wang et al. [3] proposed QETP that integrates code inspection method to solve the
problem that the coverage-based TCP methods only focus on maximizing coverage and
lacks attention to the distribution of defects in the source code. They linearly ensemble
the static bug finder FindBugs [18] and the static code coverage-based method JUPTA
[9], and adopted the cross-project defect prediction with common metrics (CPDP-CM)
model CLAMI [19] with the dynamic code coverage-based methods (Total and Addi-
tional). The experimental results show that QTEP can improve the defect detection rate
on both regression test cases and new test cases.

Mahdieh et al. [2] proposed Modified by combining cross version defect prediction
(CVDP) model based on self-defined neural network and coverage-based TCP method.
Modified uses the modified coverage criteria for the Total and Additional strategies,
respectively. This method assumes that the fault probability of the software unit is
known, that is, in the unit set of the source code 1 1{ , , , }mU u u u=  , the thj code unit ju

(1 j m≤ ≤) contains faults and jF represents the event where the fault occurs, and the
probability of the event failure ()jP F is known. Then, the modified code coverage cal-

culation method of the test case it is as shown in the formula (1), that is, the test case
covering the fault unit is added with a greater weight value, so that its priority becomes
higher.

 1

0 0

0

() (,) ()

() +(1-) ()
=1-

j
j m

j DP

DP

FaultBasedCover i Cover i j P F

P F P P P j
P C

≤ ≤

 = ×

 = ×




∑
 (1)

Where, DPC represents prior knowledge (e.g., the number of bugs in history), 0 [0,1]P ∈ .
Let ()DPP j denote the defect probability of the unit ju predicted using the DPM; When
the project provides more prior knowledge, DPC can be set to a higher value to increase
the influence of prior knowledge. Otherwise, the value of DPC should be decreased to
reduce the influence of prior knowledge.

Existing defect prediction-based TCP methods consider both defect distribution and
code coverage, which breaks the implicit assumption that defects in software are uni-
formly distributed. However, these methods only consider defect distribution and code

4 Cui Can and Wang Zhi

coverage, besides, the weighting coefficient is fixed according to the prior knowledge
related to the defect, which is difficult to obtain. Moreover, different prior knowledge
makes test case ranking difference, which leads to the narrow application scope of this
kind of method. Therefore, it is worth studying how to integrate multiple factors such
as defect distribution information and code coverage for TCP to have wider applicabil-
ity and better performance.

3 The proposed Approach

3.1 The Overview of The Approach

The framework of the proposed MFTCP is shown as Fig. 1. From the Fig. 1, we can
see that the approach contains three stages:

Firstly, build defect prediction model. The historical static metric information and
the output results of test cases are used to construct the DPM, the DPP is obtained and
the credibility of the DPM is evaluated. Secondly, construct objective function. The
defect probability, the most popular static metric (LoC) and the code coverage are in-
tegrated by the weighted method to obtain the objective function of TCP. Finally, pri-
oritize test cases. The greedy algorithm combined with the objective function is used
to get the prioritized test cases, and the performance evaluation of TCP is obtained.
3.2 Defect Prediction Model

We use machine learning methods to build DPMs. The test data is the current version
of the system under test (SUT). The training data is historical or cross-project versions,
and the validation data is the last version of the current version. According to the data,
the performance value of the DPM is obtained by validation data. Besides, the defect
probability of the SUT is also obtained.
3.3 Objective Function Construction

Multiple Factors Selection. Three factors (i.e., dynamic code coverage, LoC and de-
fect distribution) are adopted to construct objective function to generate the test case
rank. The defect distribution is obtained by the DPM, that is, the defect probability of
the software entity is obtained. The granularity of entities is determined by the granu-
larity of software metrics. For example, the granularity in object-oriented software is
usually at the class level, and the granularity in process-oriented software is usually at
the method level. The software entity the defect probability belongs to coincides with
the one measured by LoC. LoC are determined by the granularity of software entities,
i.e., if the entity granularity in the DPM is the class level, then the line of code refers to
the line of class code. If the entity granularity is the method level, then the LoC refers
to the line of method code. Dynamic code coverage is the count of software entities
(such as statement, branch and method) covered by test cases.

 Test Case Prioritization by Considering Multiple Factors 5

Metrics &
Defect Label

Code Coverage

Historical or
Cross-Project

Versions

Defect
Prediction

Model
Defect

Probabilities

Current Versions Metrics

Objective
Function

Prioritized Test
CasesTest Results

Test Case Prioritization
Performance Evaluation

Last Version Metrics &
Defect Label

Defect
Prediction

Performance
Evaluation

Test Case
Prioritization

Strategy

Stage1

Stage2

Stage3

Fig. 1. The framework of the proposed MFTCP.

Linearly Integrate Multiple Factors. To avoid the influence between defect distribu-
tion and dynamic code coverage, linear function is obtained. Since the granularity of
defect distribution is consistent with LoC, the number of lines of code is linearly nor-
malized and multiplied with the defect probability to as an integrated factor. Besides,
to avoid the "cancellation" effect after normalization to 0, the number of LoC is nor-
malized to [0.5, 1] to obtain the objective function for test cases, as shown in the for-
mula (2).

 ()
1 2

min

max min

 *() *

 1 0.5*

dp tcf w P m w C

metrics metrics
m

metrics metrics

= ∗ +


−
= − −

 (2)

6 Cui Can and Wang Zhi

where, metrics represents the value of static metric (i.e., LoC), m represents the
normalized value ranging from [0.5, 1], dpP means the defect probability, tcC stands

for code coverage of program, and 1w (2w) represents the weighting coefficient of de-
fect probability times multiple LoC (code coverage).

Weighting Coefficients Determination. To avoid setting the weighting coefficients is
relied upon priori knowledge like MAP [2] and Basic [10][11], we use the validation
set to evaluate performance of defect models. Besides, Balance proposed by Menzies
et al [20] is as the weighting coefficient for the probability of defect prediction and
LoC. The reasons for choosing to the performance measure are: (a) the defect distribu-
tion of the data is very close or even the same in the same project, although the version
has been changed. Besides, CVDP can well predict for the defect distribution in the
next version (new version) in the same project, and get the defect probability of the
software entity; (b) the performance measure varies according to the validation set (the
previous version of the test set), that is, for different target projects, the credibility of
the constructed DPM is not always 100% or is not a constant value. Therefore, the
choice of performance measure is consistent with the need for a multi-factor linearly
weighted integration that does not depend on a priori knowledge. (c) Balance is for the
assessment of the performance of DPMs for classification under the unbalanced data
condition. Besides, it is a composite metric used in many DPMs. Moreover, the coeffi-
cient does not have the null value and takes values in the range [0, 1].
3.4 Test Case Prioritization Strategy

Based on the objective function, the Total and Additional strategies are used. According
to the function and methods, the rank of test cases is achieved. In general, the granular-
ity of dynamic code coverage does not coincide with the granularity of software entities
in DPMs. Therefore, the entity granularity covered in the test case and the entity gran-
ularity of the defect prediction metric need to be converted to the same dimension, and
then calculated the integrated values to reorder test cases. After SRT is finished, the
outputs of the test cases are obtained. The defect detection rate of the TCP method can
be calculated. That is, the performance measure of MFTCP can be gotten.

4 The Experimental Study

4.1 Research Questions

To verify the performance of the proposed method, the following two research prob-
lems are set up:

RQ1: Does the proposed MFTCP perform better than the other defect prediction-
based TCP methods?

RQ2: Does the proposed MFTCP perform better than the traditional coverage-based
TCP methods?

 Test Case Prioritization by Considering Multiple Factors 7

To verify the effectiveness of the proposed method, from the perspective of defect
detection rate, research questions 1 and 2 were set. In RQ1, MFTCP is compared with
Modified[2] in CVDP scenario and QTEP[3] in CPDP-CM scenario. In RQ2, MFTCP
is compared with the Total, Additional, Original Order Prioritization (ORP), Reverse
Order Prioritization (REP), RAndom Prioritization (RAP) and OPtimal Prioritization
(OPP).
4.2 Datasets

A total of 165 versions of five Java projects are used, which are in the public De-
fect4J+M [2]. Two different scenarios named CVDP and CPDP-CM are considered,
the benchmark data are shown in Table 1.

Table 1. Dataset usage for the two scenarios CVDP and CPDP-CM

Scenario Project

Version Num-

ber for Test

Data

Version Number for

Training Data

Version Number

for Validation

Data

CVDP

Chart 1-15 3-26 2-16

Closure 1-15 3-133 2-16

Lang 1-15 3-65 2-16

Math 1-15 3-106 2-16

Time 1-15 3-27 2-16

CPDP-

CM

Chart 1-15
Closure/Lang/

Math/Time 1-15
Chart 2-16

Closure 1-15
Chart /Lang/

Math/Time 1-15
Closure 2-16

Lang 1-15
Chart/Closure /

Math/Time 1-15
Lang 2-16

Math 1-15
Chart/Closure /

Lang/Time 1-15
Math 2-16

Time 1-15
Chart/ Closure/

Lang/Math 1-15
Time 2-16

4.3 Evaluation Measures

First-Failing Rate (FFR): It is the ratio of the number of test cases needed to find the
first defect in the software to the total number of test cases. As shown in the formula
(3), the smaller the FFR, the better the performance of TCP.

8 Cui Can and Wang Zhi

 | |
| |

ff

v

test
FFR

test
= (3)

Where fftest

is the number of test cases used to discover the first defect in the cur-

rent version of the software and| |vtest is the total number of test cases in the current
version.

Weighted Average of the Percentage of Faults Detected (APFD): It is a popular
measure used to calculate the defect detection rate of TCP. The formula is shown in
Equation (4), which ranges from 0 to 1.

1 2

1

11
2

11
2

m

m

i
i

TF TF TFAPFD
mn n

TF

mn n
=

+ + +
= − +

= − +
∑



 (4)

Where iTF represents the location index of the ranked test cases that finds the first
defect i . The higher the APFD value, the better the TCP approach.

In this paper, the performance of TCP is evaluated using FFR, APFD.
4.4 Parameter Settings

To maintain fairness, the parameters settings are as the description of the method in the
original studies. For example, in the Modified method [2], the parameters in the custom
neural network are consistent with the original paper, and under-sampling (defective:
non-defective =1:2) is used to process the data for class imbalance. The weighted coef-
ficient values in Modified[2] and QETP[3]are all the best values in the original paper,
or the values in the best range.

5 Results and Discussion

5.1 RQ1

RQ1.1 Does MFTCP outperform Modified？In the CVDP scenario, MFTCP and
Modified use the Additional and Total strategies to prioritize the test cases in a total of
75 versions of five projects (i.e., Chart, Closure, Lang, Math and Time). The perfor-
mance evaluation results of the methods are obtained.

The results of APFD and FFR obtained of MFTCP and Modified with Additional
and Total strategies are shown in Table 2 and Table 3.

As shown in Table 2 and Table 3, when using the Total strategy, MFTCP obtains
better values of APFD and FFR than the comparison method Modified on each project
for 5 projects. Besides, with respect to APFD and FFR, MFTCP is superior to Modified
on each of five projects (APFD: 58.53%>57.74%; FFR: 39.4%<40.46%). For the Ad-
ditional strategy, in terms of APFD and FFR, MFTCP performs better than Modified

 Test Case Prioritization by Considering Multiple Factors 9

on most of five projects. Moreover, MFTCP with Additional performs better than Mod-
ified with Additional on average (APFD: 57.63%>57.17%; FFR: 37.5%<38.79%).

Table 2. The average APFD of MFTCP and Modified.

Project
MFTCP Modified MFTCP Modified

Total (%) Additional (%)
Chart 61.31 61.11 58.03 58.83

Closure 66.92 66.47 78.04 76.30
Lang 49.71 49.24 38.63 38.82
Math 56.73 55.93 57.29 58.49
Time 57.98 55.94 56.15 53.43
Avg. 58.53 57.74 57.63 57.17

Note: The bold data represents the better method between MFTCP and Modified.

Table 3. The average FFR of MFTCP and Modified.

Project
MFTCP Modified MFTCP Modified

Total (%) Additional (%)
Chart 37.0 37.27 39.4 37.81

Closure 30.5 31.14 16.6 20.22

Lang 49.7 50.13 56.4 56.18

Math 40.4 42.68 38.9 39.01

Time 39.1 41.07 36.0 40.71

Avg. 39.4 40.46 37.5 38.79
Note: The bold data represents the better method between MFTCP and Modified.

From the above analysis of the results in the CVDP scenario, it is can be known that
MFTCP outperform the comparison method Modified on average of most projects,
whether combined with the Additional or Total strategy. The results indicate that com-
bining LoC and defect probability with code coverage can improve the defect detection
rate, especially in terms of the Total strategy.

RQ1.2: Does MFTCP outperform QTEP? In the CPDP-CM scenario, MFTCP and
QTEP use the Additional and Total strategies on a total of 75 versions of 5 projects and
obtain the corresponding performance evaluation results. The results of APFD and FFR
are shown in Table 4 and Table 5.

In terms of APFD which is shown in Table 4, in terms of APFD, MFTCP with Total
are better than QTEP with Total on average of five projects (57.02>56.39). Besides,
and the values of APFD for MFTCP are larger than the values for QTEP on most of the

10 Cui Can and Wang Zhi

five projects. However, MFTCP with Additional performs better than QTEP with Ad-
ditional on Closure and Math, but MFTCP with Additional is worse than QTEP with
Additional on average and the other three projects.

Table 4. The average APFD of MFTCP and QTEP.

Project
MFTCP QTEP MFTCP QTEP

Total (%) Additional (%)

Chart 59.94 58.61 57.60 60.52

Closure 66.57 66.37 77.97 77.80

Lang 47.12 45.60 37.67 42.75

Math 56.38 56.42 59.37 52.75

Time 55.08 54.92 53.80 72.22

Avg. 57.02 56.39 57.28 61.21

Note: The bold data represents the better method between MFTCP and QTEP.

Table 5. The average FFR of MFTCP and QTEP.

Project
MFTCP QTEP MFTCP QTEP

Total (%) Additional (%)
Chart 38.6 40.31 39.5 35.83

Closure 30.8 31.10 16.6 19.28

Lang 52.2 53.82 58.9 54.04

Math 41.9 41.50 36.9 44.64

Time 42.5 42.77 37.4 19.44

Avg. 41.2 41.90 37.8 34.64

Note: The bold data represents the better method between MFTCP and QTEP.

With respect to FFR as shown in Table 5, for the Total strategy, MFTCP has better

FFR than QTEP on most projects. Besides, the average values of FFR for MFTCP and
QTEP are 41.2% and 41.90%, respectively. For the Additional strategy, MFTCP only
outperforms QTEP on Closure (16.6%<19.28%) and Math (36.9%<44.64%). MFTCP
with Additional has worse performance on Chart, Lang and Time in terms of APFD
and FFR. The main reason is probably that the additional defect probability is biased,
which decreases the defect rate for test cases.

From the above analysis of the results in the CPDP-CM scenario, In terms of APFD
and FFR, MFTCP combined with Total outperforms QTEP, while MFTCP using the
Additional strategy outperforms QTEP on Closure and Math according to the values of
APFD and FFR.

 Test Case Prioritization by Considering Multiple Factors 11

In summary of RQ1.1 and RQ1.2, in the CVDP scenario, in terms of Total and
Additional, MFTCP combined with the Total strategy outperforms the baselines. In
the CPDP-CM scenario, with respect to the Total strategy, MFTCP performs better
than the compared approaches. Besides, in terms of Additional, MFTCP performs
better than the baseline methods on part of the datasets.

5.2 RQ2

RQ2.1 Does MFTCP combined with Total outperform the traditional baselines?
For MFTCP, the CVDP and CPDP-CM scenarios are considered. The APFD values of
MFTCP in the two scenarios and the baseline approaches on five projects and on aver-
age are listed in Table 6.

Table 6. The average APFD (%) of MFTCP with Total and the baselines.

Project MFTCPCV MFTCPCP Total ORP REP RAP OPP
Chart 61.31 59.94 61.68 46.68 53.32 52.35 99.93

Closure 66.92 66.57 66.65 51.89 48.11 50.14 99.99
Lang 49.71 47.12 48.87 44.51 55.49 52.01 99.97
Math 56.73 56.38 57.00 58.30 41.70 51.28 99.96
Time 57.98 55.08 55.37 45.65 54.35 49.36 99.97
Avg. 58.53 57.02 57.91 49.41 50.59 51.03 99.97

Note: The bold data represents the best method except OPP.

As shown in Table 6, the OPP is a perfect method, which reaches the best value of

APFD. All values are above 99.90%. ORP and REP are two special cases of RAP. From
the results, we can know that the APFD values of ORP, REP and RAP are all close to
50%, which is lower than MFTCP in the CVDP scenario (58.53%) and the CPDP-CM
scenario (57.02%). In the CVDP scenario, the average value of APFD on five projects
of MFTCP is 58.53%, which is the second-best value among these methods. That is,
MFTCP using the CVDP model performs the best among Total (57.91%), Original
(49.41%), Reverse (50.59%) and Random (51.03%). Besides, MFTCP has two second
best values of APFD on Closure (66.92%) and Tine (57.98%). MFTCP does not out-
perform Total on Chart and Math. In the CPDP-CM scenario, MFTCP performs close
to Total, which has the third best value on average (i.e., 57.91% of Total). Moreover,
MFTCP is close to Total on most projects, such as Closure and Time. From the results,
we can see that MFTCP of CVDP perform better than Total but MFTCP of CPDP-CM
performs worse than Total on Closure, Lang and Time. The reason is probably that the
defect prediction results of CVDP are better than the results of CPDP-DM.

RQ2.2 Does MFTCP combined with Additional outperform the traditional base-
lines? Similarly to RQ2.1, the APFD results for MFTCP with Additional by consid-
ering the CVDP and the CPDP-CM scenarios and the five baseline methods are
shown in Table 7.

12 Cui Can and Wang Zhi

As shown in Table 7, the values of ORP, REP, RAP and OPP are the same as in
Table 6. The values of APFD for MFTCP in CVDP and CPDP-CM scenarios are
57.63% and 57.28%, respectively. On average, MFTCP are better than ORP, REP and
RAP. In the CVDP scenario, MFTCP performs better than Additional on Chart
(58.03%>56.63%) and Math (57.29%>49.57%), but worse than Additional on Closure
(78.04%<84.95%), Lang (38.63%<42.91%) and Time (56.15%<59.57%). Similarly, in
the CPDP-CM scenario, MFTCP outperforms Additional on Chart and Math, but does
not outperform Additional on Closure, Lang and Time. The defect prediction probabil-
ities make an effect on the proposed TCP method. Therefore, the reason may be that
the biased defect prediction results with the additional strategy decreases the defect
detection rate on some versions.

Table 7. The average APFD (%) of MFTCP with Additional and the baselines.

Project MFTCPCV MFTCPCP Additional ORP REP RAP OPP

Chart 58.03 57.60 56.63 46.68 53.32 52.35 99.93
Closure 78.04 77.97 84.95 51.89 48.11 50.14 99.99

Lang 38.63 37.67 42.91 44.51 55.49 52.01 99.97
Math 57.29 59.37 49.78 58.30 41.70 51.28 99.96
Time 56.15 53.80 59.57 45.65 54.35 49.36 99.97
Avg. 57.63 57.28 58.77 49.41 50.59 51.03 99.97

Note: The bold data represents the best method except OPP.

In summary of RQ2.1 and RQ2.2, in the CVDP scenario, MFTCP combined
with the Total strategy outperforms the baselines (Total, ORP, REP and RAP) ex-
cept OPP. In the CPDP-CM scenario, MFTCP with Additional can achieve better
APFD than pure Additional on some projects.

5.3 Discussion

The method combines defect prediction results, a metric of software program (i.e., LoC)
and dynamic code coverage to form an ensemble approach. The prediction result is a
key factor of MFTCP. To reach the result, the prepare work is needed, such as metrics
collection, datasets construction and processing, defect prediction model construction.
In the experiment, we use five projects with different sizes and types. For example,
Math has at least (most) 905 (1105) instances for defect prediction and 3458 (4270) test
cases with 4384 (5252) units for prioritization. Lang is with at least (most) 214 (230)
instances for defect prediction and 2049 (2291) test cases and 2018 (2197) units for
prioritization. For the experimental results, the proposed MFTCP indicates the effec-
tiveness, which the numbers instances from the projects are larger than 200. For smaller
projects, such as the project with below 100 instances, constructing machine learning
model is difficult with few samples. Moreover, preparing datasets is time-consuming.
Therefore, MFTCP might be improper for the smaller projects.

 Test Case Prioritization by Considering Multiple Factors 13

6 Conclusion and Future Work

In the SRT phase, defect prediction-based TCP methods integrate the defect prediction
probability and code coverage by the weighting factors. But the weighting values need
to have a priori knowledge that is difficult to obtain, such as those related to defects,
etc. Therefore, a multi-factorial linear weighting test case prioritization method named
MFTCP is proposed. MFTCP takes the defect distribution (i.e., defects), LoC, and the
code coverage of test cases into account. Besides, an objective function is constructed
by integrating the defect prediction probability and LoC with the code coverage in a
linearly weighted way. The former coefficient is calculated by using the DPM evalua-
tion measure Balance, and the latter as 1-Balance. Since Balance varies according to
different target project, a three-factor linearly weighted integration can be achieved in-
stead of setting it based on a priori knowledge.

To verified the effectiveness of MFTCP, both CVDP and CPDP-CM scenarios are
considered for construct DPMs and extensive experiments on a total of 75 versions of
five publicly available Java projects (Chart, Closure, Lang, Math and Time) in De-
fect4J+M. The experimental results demonstrate the effectiveness of MFTCP combined
with two traditional strategies, Total and Additional. Especially, MFTCP outperforms
the compared method Modified in terms of APFD and FFR.

Acknowledgments. No funding was received to assist with the study.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

• References

1. Wong, W. E., Horgan, J. R., London, S., et al.: A Study of Effective Regression Testing in
Practice. In:8th International Symposium on Software Reliability Engineering (ISSRE1997) on
Proceedings, pp. 264-274. IEEE Computer Society, Los Alamitos (1997)
2. Mahdieh M., Mirian-Hosseinabadi S.-H., Etemadi K., et al.: Incorporating Fault-Proneness
Estimations into Coverage-based Test Case Prioritization Methods. Information and Software
Technology 121, 106269 (2020)
3. Wang S., Nam J., Tan L.: QTEP: Quality-Aware Test Case Prioritization. In: 11th Joint Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2017) on Proceedings, pp. 523-534. Asso-
ciation for Computing Machinery, New York (2017)
4. Hao D., Zhao X., Zhang L.: Adaptive Test-Case Prioritization Guided by Output Inspection.
In: 37th Annual Computer Software and Applications Conference (COMPSAC 2013), pp. 169-
179. IEEE Computer Society, Los Alamitos (2013)
5 Rothermel G., Roland H. U., Chu C., et al.: Prioritizing Test Cases for Regression Testing.
IEEE Transactions on Software Engineering 27(10), 929-948 (2001)
6 Elbaum S., Malishevsky A.G., Rothermel G.: Test Case Prioritization: A Family of Empirical
Studies. IEEE Transactions on Software Engineering, 28(2), 159-182 (2002)

14 Cui Can and Wang Zhi

7 Rothermel G., Roland H U., Chu C., et al.: Test Case Prioritization: An Empirical Study. In:
IEEE International Conference on Software Maintenance (ICSM'99) on Proceedings, pp. 179-
188. Institute of Electrical and Electronics Engineers Inc., United States (1999)
8 Luo Q., Moran K., Poshyvanyk D.: A Large-Scale Empirical Comparison of Static and Dy-
namic Test Case Prioritization Techniques. In: 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2016) on Proceedings, pp. 559-570. Association
for Computing Machinery, New York (2016)
9 Mei H., Hao D., Zhang L., et al.: A Static Approach to Prioritizing JUnit Test Cases. IEEE
Transactions on Software Engineering 38(6), 1258-1275 (2012)
10 Zhang L., Hao D., Zhang L., et al.: Bridging the Gap between the Total and Additional Test-
Case Prioritization Strategies. In: 35th International Conference on Software Engineering
(ICSE2013) on Proceeding, pp. 192-201. Institute of Electrical and Electronics Engineers Inc.,
United States (2013)
11 Hao D., Zhang L., Zhang L., et al.: A Unified Test Case Prioritization Approach. ACM Trans-
actions on Software Engineering and Methodology 24(2), 1-31 (2014)
12 Boehm B., Basili V.R.: Software Defect Reduction Top 10 List. Computer 34(1), 135-137
(2001)
13 Shull F., Basili V., Boehm B., et al.: What We Have Learned About Fighting Defects. In: 8th
IEEE Symposium on Software Metrics (METRICS 2002) on Proceedings, pp. 249-258. IEEE
Computer Society, Los Alamitos (2002)
14 Eghbali S., Kudva V., Rothermel G., et al.: Supervised Tie Breaking in Test Case Prioritiza-
tion. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
(ICSE-Companion 2019) on Proceedings, pp. 242-243. Institute of Electrical and Electronics En-
gineers Inc., United States (2019)
15 Paterson D., Campos J., Abreu R., et al.: An Empirical Study on the Use of Defect Prediction
for Test Case Prioritization. In: 2019 IEEE 12th Conference on Software Testing, Validation and
Verification (ICST2019) on Proceedings, pp. 346-357. Institute of Electrical and Electronics En-
gineers Inc., United States (2019)
16 Hao D., Zhang L., Zang L., et al.: To Be Optimal or Not in Test-Case Prioritization. IEEE
Transactions on Software Engineering 42(5), 490-505 (2016)
17 Paterson D., Kapfhammer G.M., Fraser G., et al.: Using Controlled Numbers of Real Faults
and Mutants to Empirically Evaluate Coverage-Based Test Case Prioritization. In: 13th Interna-
tional Workshop on Automation of Software Test (AST 2018) on Proceedings, pp. 57-63. Insti-
tute of Electrical and Electronics Engineers Inc., United States (2018)
18 Hovemeyer D., Pugh W.: Finding Bugs Is Easy. ACM Sigplan Notices 39(12), 92-106 (2004)
19 Nam J., Kim S.: CLAMI: Defect Prediction on Unlabeled Datasets. In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE2015) on Proceedings, pp.
452-463. Institute of Electrical and Electronics Engineers Inc., United States (2015)
20 Menzies T., Greenwald J., Frank A.: Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Transactions on Software Engineering 33(1), 2-13 (2007)

	1 Introduction
	2 Related Works
	2.1 Traditional Test Case Prioritization Approaches
	2.2 Hybrid Test Case Prioritization Approaches

	3 The proposed Approach
	3.1 The Overview of The Approach
	3.2 Defect Prediction Model
	3.3 Objective Function Construction
	Multiple Factors Selection. Three factors (i.e., dynamic code coverage, LoC and defect distribution) are adopted to construct objective function to generate the test case rank. The defect distribution is obtained by the DPM, that is, the defect probab...
	Linearly Integrate Multiple Factors. To avoid the influence between defect distribution and dynamic code coverage, linear function is obtained. Since the granularity of defect distribution is consistent with LoC, the number of lines of code is linearl...
	Weighting Coefficients Determination. To avoid setting the weighting coefficients is relied upon priori knowledge like MAP [2] and Basic [10][11], we use the validation set to evaluate performance of defect models. Besides, Balance proposed by Menzies...

	3.4 Test Case Prioritization Strategy

	4 The Experimental Study
	4.1 Research Questions
	4.2 Datasets
	4.3 Evaluation Measures
	4.4 Parameter Settings

	5 Results and Discussion
	5.1 RQ1
	RQ1.1 Does MFTCP outperform Modified？In the CVDP scenario, MFTCP and Modified use the Additional and Total strategies to prioritize the test cases in a total of 75 versions of five projects (i.e., Chart, Closure, Lang, Math and Time). The performance ...
	RQ1.2: Does MFTCP outperform QTEP? In the CPDP-CM scenario, MFTCP and QTEP use the Additional and Total strategies on a total of 75 versions of 5 projects and obtain the corresponding performance evaluation results. The results of APFD and FFR are sho...

	5.2 RQ2
	RQ2.1 Does MFTCP combined with Total outperform the traditional baselines? For MFTCP, the CVDP and CPDP-CM scenarios are considered. The APFD values of MFTCP in the two scenarios and the baseline approaches on five projects and on average are listed i...
	RQ2.2 Does MFTCP combined with Additional outperform the traditional baselines? Similarly to RQ2.1, the APFD results for MFTCP with Additional by considering the CVDP and the CPDP-CM scenarios and the five baseline methods are shown in Table 7.

	5.3 Discussion

	6 Conclusion and Future Work

