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Abstract. In software regression testing, reorder the test cases to ensure the mod-
ified code does not introduce new effects and keep function right. Traditional 
coverage-based test case prioritization (TCP) approaches are Total and Addi-
tional. These two approaches only use code coverage as the measure to rank the 
test cases. Several defect prediction-based TCP approaches integrate the defect 
prediction probability and code coverage with weighting coefficients. However, 
previous methods need to have a priori knowledge related to defects, which is 
difficult to obtain. Therefore, we proposed an approach named MFTCP by con-
sider code coverage, defect prediction probability, and lines of code (LoC) with 
automatic weighting coefficients to rank regression test cases. The experimental 
results indicate the proposed method is more effective than the baselines, espe-
cially in terms of the total strategy. 

Keywords: Software Testing, Test Case Prioritization (TCP), Code Coverage, 
Defect Prediction (DP). 

1 Introduction 

When the software initial test (SIT) has been completed, the execution information of 
test cases is known, i.e., the coverage and the execution results of the test cases are 
obtained. Software regression testing (SRT) is used to confirm that recent program 
changes have not adversely affected existing functionality, and new tests must be per-
formed to test the new functionality [1]. In white-box SRT, the popularly traditional 
dynamic code coverage-based test case prioritization (TCP) techniques are Total and 
Additional. However, the techniques only utilize the dynamic code coverage infor-
mation without the execution results. 

At present, there are several studies that use the outputs of test cases and/or static 
metrics of software program to integrate with dynamic code coverage to prioritize test 
cases. For example, the Modified code coverage method [2] (Modified), Quality-aware 
TEst case Prioritization (QTEP) [3], Adaptive TCP method (AdaTCP) [4], etc. These 
methods use static metrics to build defect prediction models (DPMs) to achieve the 
defect prediction probability (DPP) and conduct a variant object function to integrate 
code coverage and prediction probability. However, these methods require the prior 
knowledge of software defects (such as the number of defects in the software). Besides, 
the setting of the coefficient of multiple factors (such as Modified 2]) is difficult. The 
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coefficient of the software is difficult to obtain and usually fixed. Different software 
program has different defect distribution, which makes the fixed coefficient improper.  

Therefore, multiple factors-based test case prioritization method (MFTCP) is pro-
posed. MFTCP considers DPP, software static metrics, and dynamic code coverage. In 
this method, the three factors of are weighted to conduct a novel objective function. 
The weighted coefficient is obtained by the performance evaluation measure of DPM, 
rather than by the prior knowledge setting. In the paper, Balance is selected as one of 
the coefficients. Because DPMs are varied according to different software under test 
(SUT). Therefore, the Balance value changes with the change of DPM. 

2 Related Works 

2.1 Traditional Test Case Prioritization Approaches 

Code coverage-based TCP was proposed in the early 21st century. From 1999 to 2002, 
Rothermel and Elbaum published several papers to form the main framework of code 
coverage-based TCPs [5][6][7]. Total and Additional strategies implemented by the 
greedy algorithm are the most traditional approaches [5]. Coverage-based TCP methods 
use the coverage information of source code and test cases (i.e., static code coverage 
information or dynamic code coverage information), and rank test cases by maximizing 
code coverage by adopting different coverage criteria [8]. The dynamic code coverage 
is collected by executing the program and tracking each executed unit [9]. Commonly 
used coverage criteria are statement coverage [5], function/method coverage, branch 
coverage [5], block coverage, data-flow coverage, and Modified Condition/Decision 
Condition (MC/DC) coverage etc. 

Zhang et al. [10][11] used the probability model to merge Total and Additional into 
a unified model, and proposed the Basic model and Extended model to bridge the gap 
between Total and Additional. The basic idea is that “each time a unit is covered by a 
test case, which can potentially detect some faults in the unit, the probability that the 
unit contains undetected faults decreases by certain rate”. Experiments show that using 
uniform probability values with multiple strategies can significantly outperform Total 
and Additional. 
2.2 Hybrid Test Case Prioritization Approaches 

Total and Additional only consider code coverage, that is, the assumption is that “test 
cases with higher coverage can detect more defects”. The assumption implies that “de-
fects are evenly distributed in the program”, which is obviously inconsistent with the 
20:80 Rule [12][13]. Based on this, several studies [5][6][14][15] have proposed to 
prioritize test cases by considering multiple factors including code coverage. 

Elbaum et al. [6] considered test cost and fault severity level, and used three fault 
severity levels and five test cost distributions for case application. Among them, the 
linear method sets six fault severity levels, that is, the fault level value is from 1 to 6, 
and the fault level value is set from 20 to25 using the exponential method. 

Rothermel et al. [5] consider the ability of a test case to expose faults depending not 
only on whether the test case reaches the faulty statement, but also on the probability 



 Test Case Prioritization by Considering Multiple Factors 3 

that the fault in the statement causes the test case to fail. This paper proposes Total 
Fault-Exposing Potential coverage (FEP-total) and Additional Fault-Exposing Poten-
tial coverage (FEP-additional). Approximate FEP values of test cases are obtained us-
ing mutation analysis.  

Recent studies have shown that even the optimal coverage-based TCP method does 
not outperform the Additional method much in terms of fault detection rate [16]. Hao 
et al. [16] argue that to improve the Additional method, some information other than 
the structure coverage should be adopted. Paterson et al. [17] believe that part of the 
reason may be the complexity of real faults and the assumption of coverage-based 
methods. Therefore, some studies have proposed some improved methods by fusing 
static metrics and test case related information [3][14]. 

Wang et al. [3] proposed QETP that integrates code inspection method to solve the 
problem that the coverage-based TCP methods only focus on maximizing coverage and 
lacks attention to the distribution of defects in the source code. They linearly ensemble 
the static bug finder FindBugs [18] and the static code coverage-based method JUPTA 
[9], and adopted the cross-project defect prediction with common metrics (CPDP-CM) 
model CLAMI [19] with the dynamic code coverage-based methods (Total and Addi-
tional). The experimental results show that QTEP can improve the defect detection rate 
on both regression test cases and new test cases. 

Mahdieh et al. [2] proposed Modified by combining cross version defect prediction 
(CVDP) model based on self-defined neural network and coverage-based TCP method. 
Modified uses the modified coverage criteria for the Total and Additional strategies, 
respectively. This method assumes that the fault probability of the software unit is 
known, that is, in the unit set of the source code 1 1{ , , , }mU u u u=  , the thj code unit ju

(1 j m≤ ≤ ) contains faults and jF represents the event where the fault occurs, and the 
probability of the event failure ( )jP F  is known. Then, the modified code coverage cal-

culation method of the test case it  is as shown in the formula (1), that is, the test case 
covering the fault unit is added with a greater weight value, so that its priority becomes 
higher. 
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Where, DPC  represents prior knowledge (e.g., the number of bugs in history), 0 [0,1]P ∈ . 
Let ( )DPP j  denote the defect probability of the unit ju  predicted using the DPM; When 
the project  provides more prior knowledge, DPC  can be set to a higher value to increase 
the influence of prior knowledge. Otherwise, the value of DPC  should be decreased to 
reduce the influence of prior knowledge. 

Existing defect prediction-based TCP methods consider both defect distribution and 
code coverage, which breaks the implicit assumption that defects in software are uni-
formly distributed. However, these methods only consider defect distribution and code 
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coverage, besides, the weighting coefficient is fixed according to the prior knowledge 
related to the defect, which is difficult to obtain. Moreover, different prior knowledge 
makes test case ranking difference, which leads to the narrow application scope of this 
kind of method. Therefore, it is worth studying how to integrate multiple factors such 
as defect distribution information and code coverage for TCP to have wider applicabil-
ity and better performance. 

3 The proposed Approach 

3.1 The Overview of The Approach 

The framework of the proposed MFTCP is shown as Fig. 1. From the Fig. 1, we can 
see that the approach contains three stages: 

Firstly, build defect prediction model. The historical static metric information and 
the output results of test cases are used to construct the DPM, the DPP is obtained and 
the credibility of the DPM is evaluated. Secondly, construct objective function. The 
defect probability, the most popular static metric (LoC) and the code coverage are in-
tegrated by the weighted method to obtain the objective function of TCP. Finally, pri-
oritize test cases. The greedy algorithm combined with the objective function is used 
to get the prioritized test cases, and the performance evaluation of TCP is obtained. 
3.2 Defect Prediction Model 

We use machine learning methods to build DPMs. The test data is the current version 
of the system under test (SUT). The training data is historical or cross-project versions, 
and the validation data is the last version of the current version. According to the data, 
the performance value of the DPM is obtained by validation data. Besides, the defect 
probability of the SUT is also obtained. 
3.3 Objective Function Construction 

Multiple Factors Selection. Three factors (i.e., dynamic code coverage, LoC and de-
fect distribution) are adopted to construct objective function to generate the test case 
rank. The defect distribution is obtained by the DPM, that is, the defect probability of 
the software entity is obtained. The granularity of entities is determined by the granu-
larity of software metrics. For example, the granularity in object-oriented software is 
usually at the class level, and the granularity in process-oriented software is usually at 
the method level. The software entity the defect probability belongs to coincides with 
the one measured by LoC. LoC are determined by the granularity of software entities, 
i.e., if the entity granularity in the DPM is the class level, then the line of code refers to 
the line of class code. If the entity granularity is the method level, then the LoC refers 
to the line of method code. Dynamic code coverage is the count of software entities 
(such as statement, branch and method) covered by test cases. 
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Fig. 1. The framework of the proposed MFTCP. 

Linearly Integrate Multiple Factors. To avoid the influence between defect distribu-
tion and dynamic code coverage, linear function is obtained. Since the granularity of 
defect distribution is consistent with LoC, the number of lines of code is linearly nor-
malized and multiplied with the defect probability to as an integrated factor. Besides, 
to avoid the "cancellation" effect after normalization to 0, the number of LoC is nor-
malized to [0.5, 1] to obtain the objective function for test cases, as shown in the for-
mula (2). 
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where, metrics represents the value of static metric (i.e., LoC), m  represents the 
normalized value ranging from [0.5, 1], dpP  means the defect probability, tcC  stands 

for code coverage of program, and 1w  ( 2w ) represents the weighting coefficient of de-
fect probability times multiple LoC (code coverage). 

Weighting Coefficients Determination. To avoid setting the weighting coefficients is 
relied upon priori knowledge like MAP [2] and Basic [10][11], we use the validation 
set to evaluate performance of defect models. Besides, Balance proposed by Menzies 
et al [20] is as the weighting coefficient for the probability of defect prediction and 
LoC. The reasons for choosing to the performance measure are: (a) the defect distribu-
tion of the data is very close or even the same in the same project, although the version 
has been changed. Besides, CVDP can well predict for the defect distribution in the 
next version (new version) in the same project, and get the defect probability of the 
software entity; (b) the performance measure varies according to the validation set (the 
previous version of the test set), that is, for different target projects, the credibility of 
the constructed DPM is not always 100% or is not a constant value. Therefore, the 
choice of performance measure is consistent with the need for a multi-factor linearly 
weighted integration that does not depend on a priori knowledge. (c) Balance is for the 
assessment of the performance of DPMs for classification under the unbalanced data 
condition. Besides, it is a composite metric used in many DPMs. Moreover, the coeffi-
cient does not have the null value and takes values in the range [0, 1].   
3.4 Test Case Prioritization Strategy 

Based on the objective function, the Total and Additional strategies are used. According 
to the function and methods, the rank of test cases is achieved. In general, the granular-
ity of dynamic code coverage does not coincide with the granularity of software entities 
in DPMs. Therefore, the entity granularity covered in the test case and the entity gran-
ularity of the defect prediction metric need to be converted to the same dimension, and 
then calculated the integrated values to reorder test cases. After SRT is finished, the 
outputs of the test cases are obtained. The defect detection rate of the TCP method can 
be calculated. That is, the performance measure of MFTCP can be gotten. 

4 The Experimental Study 

4.1 Research Questions 

To verify the performance of the proposed method, the following two research prob-
lems are set up: 

RQ1: Does the proposed MFTCP perform better than the other defect prediction-
based TCP methods? 

RQ2: Does the proposed MFTCP perform better than the traditional coverage-based 
TCP methods? 
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To verify the effectiveness of the proposed method, from the perspective of defect 
detection rate, research questions 1 and 2 were set. In RQ1, MFTCP is compared with 
Modified[2] in CVDP scenario and QTEP[3] in CPDP-CM scenario. In RQ2, MFTCP 
is compared with the Total, Additional, Original Order Prioritization (ORP), Reverse 
Order Prioritization (REP), RAndom Prioritization (RAP) and OPtimal Prioritization 
(OPP).  
4.2 Datasets 

A total of 165 versions of five Java projects are used, which are in the public De-
fect4J+M [2]. Two different scenarios named CVDP and CPDP-CM are considered, 
the benchmark data are shown in Table 1. 

Table 1. Dataset usage for the two scenarios CVDP and CPDP-CM 

Scenario Project 

Version Num-

ber for Test 

Data 

Version Number for 

Training Data 

Version Number 

for Validation 

Data 

CVDP 

Chart 1-15 3-26 2-16 

Closure 1-15 3-133 2-16 

Lang 1-15 3-65 2-16 

Math 1-15 3-106 2-16 

Time 1-15 3-27 2-16 

CPDP-

CM 

Chart 1-15 
Closure/Lang/ 

Math/Time 1-15 
Chart 2-16 

Closure 1-15 
Chart /Lang/ 

Math/Time 1-15 
Closure 2-16 

Lang 1-15 
Chart/Closure / 

Math/Time 1-15 
Lang 2-16 

Math 1-15 
Chart/Closure / 

Lang/Time 1-15 
Math 2-16 

Time 1-15 
Chart/ Closure/ 

Lang/Math 1-15 
Time 2-16 

4.3 Evaluation Measures 

First-Failing Rate (FFR): It is the ratio of the number of test cases needed to find the 
first defect in the software to the total number of test cases. As shown in the formula 
(3), the smaller the FFR, the better the performance of TCP. 
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rent version of the software and| |vtest  is the total number of test cases in the current 
version. 

Weighted Average of the Percentage of Faults Detected (APFD): It is a popular 
measure used to calculate the defect detection rate of TCP. The formula is shown in 
Equation (4), which ranges from 0 to 1. 
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Where iTF  represents the location index of the ranked test cases that finds the first 
defect i . The higher the APFD value, the better the TCP approach.  

In this paper, the performance of TCP is evaluated using FFR, APFD.  
4.4 Parameter Settings 

To maintain fairness, the parameters settings are as the description of the method in the 
original studies. For example, in the Modified method [2], the parameters in the custom 
neural network are consistent with the original paper, and under-sampling (defective: 
non-defective =1:2) is used to process the data for class imbalance. The weighted coef-
ficient values in Modified[2] and QETP[3]are all the best values in the original paper, 
or the values in the best range. 

5 Results and Discussion 

5.1 RQ1 

RQ1.1 Does MFTCP outperform Modified？In the CVDP scenario, MFTCP and 
Modified use the Additional and Total strategies to prioritize the test cases in a total of 
75 versions of five projects (i.e., Chart, Closure, Lang, Math and Time). The perfor-
mance evaluation results of the methods are obtained. 

The results of APFD and FFR obtained of MFTCP and Modified with Additional 
and Total strategies are shown in Table 2 and Table 3.  

As shown in Table 2 and Table 3, when using the Total strategy, MFTCP obtains 
better values of APFD and FFR than the comparison method Modified on each project 
for 5 projects. Besides, with respect to APFD and FFR, MFTCP is superior to Modified 
on each of five projects (APFD: 58.53%>57.74%; FFR: 39.4%<40.46%).  For the Ad-
ditional strategy, in terms of APFD and FFR, MFTCP performs better than Modified 
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on most of five projects. Moreover, MFTCP with Additional performs better than Mod-
ified with Additional on average (APFD: 57.63%>57.17%; FFR: 37.5%<38.79%). 

Table 2. The average APFD of MFTCP and Modified. 

Project 
MFTCP Modified MFTCP Modified 

Total (%) Additional (%) 
Chart 61.31 61.11 58.03 58.83 

Closure 66.92 66.47 78.04 76.30 
Lang 49.71 49.24 38.63 38.82 
Math 56.73 55.93 57.29 58.49 
Time 57.98 55.94 56.15 53.43 
Avg. 58.53 57.74 57.63 57.17 

Note: The bold data represents the better method between MFTCP and Modified. 

Table 3. The average FFR of MFTCP and Modified. 

Project 
MFTCP Modified MFTCP Modified 

Total (%) Additional (%) 
Chart 37.0 37.27 39.4 37.81 

Closure 30.5 31.14 16.6 20.22 

Lang 49.7 50.13 56.4 56.18 

Math 40.4 42.68 38.9 39.01 

Time 39.1 41.07 36.0 40.71 

Avg. 39.4 40.46 37.5 38.79 
Note: The bold data represents the better method between MFTCP and Modified. 

From the above analysis of the results in the CVDP scenario, it is can be known that 
MFTCP outperform the comparison method Modified on average of most projects, 
whether combined with the Additional or Total strategy. The results indicate that com-
bining LoC and defect probability with code coverage can improve the defect detection 
rate, especially in terms of the Total strategy. 

RQ1.2: Does MFTCP outperform QTEP? In the CPDP-CM scenario, MFTCP and 
QTEP use the Additional and Total strategies on a total of 75 versions of 5 projects and 
obtain the corresponding performance evaluation results. The results of APFD and FFR 
are shown in Table 4 and Table 5. 

In terms of APFD which is shown in Table 4, in terms of APFD, MFTCP with Total 
are better than QTEP with Total on average of five projects (57.02>56.39). Besides, 
and the values of APFD for MFTCP are larger than the values for QTEP on most of the 
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five projects. However, MFTCP with Additional performs better than QTEP with Ad-
ditional on Closure and Math, but MFTCP with Additional is worse than QTEP with 
Additional on average and the other three projects. 

Table 4. The average APFD of MFTCP and QTEP. 

Project 
MFTCP QTEP MFTCP QTEP 

Total (%) Additional (%) 

Chart 59.94 58.61 57.60 60.52 

Closure 66.57 66.37 77.97 77.80 

Lang 47.12 45.60 37.67 42.75 

Math 56.38 56.42 59.37 52.75 

Time 55.08 54.92 53.80 72.22 

Avg. 57.02 56.39 57.28 61.21 

Note: The bold data represents the better method between MFTCP and QTEP. 

Table 5. The average FFR of MFTCP and QTEP. 

Project 
MFTCP QTEP MFTCP QTEP 

Total (%) Additional (%) 
Chart 38.6 40.31 39.5  35.83 

Closure 30.8 31.10 16.6  19.28 

Lang 52.2 53.82 58.9  54.04 

Math 41.9 41.50 36.9  44.64 

Time 42.5 42.77 37.4  19.44 

Avg. 41.2 41.90 37.8  34.64 

Note: The bold data represents the better method between MFTCP and QTEP. 
 
With respect to FFR as shown in Table 5, for the Total strategy, MFTCP has better 

FFR than QTEP on most projects. Besides, the average values of FFR for MFTCP and 
QTEP are 41.2% and 41.90%, respectively. For the Additional strategy, MFTCP only 
outperforms QTEP on Closure (16.6%<19.28%) and Math (36.9%<44.64%). MFTCP 
with Additional has worse performance on Chart, Lang and Time in terms of APFD 
and FFR. The main reason is probably that the additional defect probability is biased, 
which decreases the defect rate for test cases.  

From the above analysis of the results in the CPDP-CM scenario, In terms of APFD 
and FFR, MFTCP combined with Total outperforms QTEP, while MFTCP using the 
Additional strategy outperforms QTEP on Closure and Math according to the values of 
APFD and FFR. 
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In summary of RQ1.1 and RQ1.2, in the CVDP scenario, in terms of Total and 
Additional, MFTCP combined with the Total strategy outperforms the baselines. In 
the CPDP-CM scenario, with respect to the Total strategy, MFTCP performs better 
than the compared approaches. Besides, in terms of Additional, MFTCP performs 
better than the baseline methods on part of the datasets. 

5.2 RQ2 

RQ2.1 Does MFTCP combined with Total outperform the traditional baselines? 
For MFTCP, the CVDP and CPDP-CM scenarios are considered. The APFD values of 
MFTCP in the two scenarios and the baseline approaches on five projects and on aver-
age are listed in Table 6. 

Table 6. The average APFD (%) of MFTCP with Total and the baselines. 

Project MFTCPCV MFTCPCP Total ORP REP RAP OPP 
Chart 61.31 59.94 61.68 46.68 53.32 52.35 99.93 

Closure 66.92 66.57 66.65 51.89 48.11 50.14 99.99 
Lang 49.71 47.12 48.87 44.51 55.49 52.01 99.97 
Math 56.73 56.38 57.00 58.30 41.70 51.28 99.96 
Time 57.98 55.08 55.37 45.65 54.35 49.36 99.97 
Avg. 58.53 57.02 57.91 49.41 50.59 51.03 99.97 

Note: The bold data represents the best method except OPP. 
 
As shown in Table 6, the OPP is a perfect method, which reaches the best value of 

APFD. All values are above 99.90%. ORP and REP are two special cases of RAP. From 
the results, we can know that the APFD values of ORP, REP and RAP are all close to 
50%, which is lower than MFTCP in the CVDP scenario (58.53%) and the CPDP-CM 
scenario (57.02%). In the CVDP scenario, the average value of APFD on five projects 
of MFTCP is 58.53%, which is the second-best value among these methods. That is, 
MFTCP using the CVDP model performs the best among Total (57.91%), Original 
(49.41%), Reverse (50.59%) and Random (51.03%). Besides, MFTCP has two second 
best values of APFD on Closure (66.92%) and Tine (57.98%). MFTCP does not out-
perform Total on Chart and Math.  In the CPDP-CM scenario, MFTCP performs close 
to Total, which has the third best value on average (i.e., 57.91% of Total). Moreover, 
MFTCP is close to Total on most projects, such as Closure and Time. From the results, 
we can see that MFTCP of CVDP perform better than Total but MFTCP of CPDP-CM 
performs worse than Total on Closure, Lang and Time. The reason is probably that the 
defect prediction results of CVDP are better than the results of CPDP-DM. 

RQ2.2 Does MFTCP combined with Additional outperform the traditional base-
lines? Similarly to RQ2.1, the APFD results for MFTCP with Additional by consid-
ering the CVDP and the CPDP-CM scenarios and the five baseline methods are 
shown in Table 7.  
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As shown in Table 7, the values of ORP, REP, RAP and OPP are the same as in 
Table 6. The values of APFD for MFTCP in CVDP and CPDP-CM scenarios are 
57.63% and 57.28%, respectively. On average, MFTCP are better than ORP, REP and 
RAP. In the CVDP scenario, MFTCP performs better than Additional on Chart 
(58.03%>56.63%) and Math (57.29%>49.57%), but worse than Additional on Closure 
(78.04%<84.95%), Lang (38.63%<42.91%) and Time (56.15%<59.57%). Similarly, in 
the CPDP-CM scenario, MFTCP outperforms Additional on Chart and Math, but does 
not outperform Additional on Closure, Lang and Time. The defect prediction probabil-
ities make an effect on the proposed TCP method. Therefore, the reason may be that 
the biased defect prediction results with the additional strategy decreases the defect 
detection rate on some versions. 

Table 7. The average APFD (%) of MFTCP with Additional and the baselines. 

Project MFTCPCV MFTCPCP Additional ORP REP RAP OPP 

Chart 58.03 57.60 56.63 46.68 53.32 52.35 99.93 
Closure 78.04 77.97 84.95 51.89 48.11 50.14 99.99 

Lang 38.63 37.67 42.91 44.51 55.49 52.01 99.97 
Math 57.29 59.37 49.78 58.30 41.70 51.28 99.96 
Time 56.15 53.80 59.57 45.65 54.35 49.36 99.97 
Avg. 57.63 57.28 58.77 49.41 50.59 51.03 99.97 

Note: The bold data represents the best method except OPP. 
 

In summary of RQ2.1 and RQ2.2, in the CVDP scenario, MFTCP combined 
with the Total strategy outperforms the baselines (Total, ORP, REP and RAP) ex-
cept OPP. In the CPDP-CM scenario, MFTCP with Additional can achieve better 
APFD than pure Additional on some projects. 

5.3 Discussion 

The method combines defect prediction results, a metric of software program (i.e., LoC) 
and dynamic code coverage to form an ensemble approach. The prediction result is a 
key factor of MFTCP. To reach the result, the prepare work is needed, such as metrics 
collection, datasets construction and processing, defect prediction model construction. 
In the experiment, we use five projects with different sizes and types. For example, 
Math has at least (most) 905 (1105) instances for defect prediction and 3458 (4270) test 
cases with 4384 (5252) units for prioritization. Lang is with at least (most) 214 (230) 
instances for defect prediction and 2049 (2291) test cases and 2018 (2197) units for 
prioritization. For the experimental results, the proposed MFTCP indicates the effec-
tiveness, which the numbers instances from the projects are larger than 200. For smaller 
projects, such as the project with below 100 instances, constructing machine learning 
model is difficult with few samples. Moreover, preparing datasets is time-consuming. 
Therefore, MFTCP might be improper for the smaller projects.  
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6 Conclusion and Future Work 

In the SRT phase, defect prediction-based TCP methods integrate the defect prediction 
probability and code coverage by the weighting factors. But the weighting values need 
to have a priori knowledge that is difficult to obtain, such as those related to defects, 
etc. Therefore, a multi-factorial linear weighting test case prioritization method named 
MFTCP is proposed. MFTCP takes the defect distribution (i.e., defects), LoC, and the 
code coverage of test cases into account. Besides, an objective function is constructed 
by integrating the defect prediction probability and LoC with the code coverage in a 
linearly weighted way. The former coefficient is calculated by using the DPM evalua-
tion measure Balance, and the latter as 1-Balance. Since Balance varies according to 
different target project, a three-factor linearly weighted integration can be achieved in-
stead of setting it based on a priori knowledge.  

To verified the effectiveness of MFTCP, both CVDP and CPDP-CM scenarios are 
considered for construct DPMs and extensive experiments on a total of 75 versions of 
five publicly available Java projects (Chart, Closure, Lang, Math and Time) in De-
fect4J+M. The experimental results demonstrate the effectiveness of MFTCP combined 
with two traditional strategies, Total and Additional. Especially, MFTCP outperforms 
the compared method Modified in terms of APFD and FFR. 
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