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Abstract. To address the issues of limited computing power of under-
water equipment and low clarity of underwater images, an improved
lightweight YOLOv8 algorithm is proposed. First, the Cross-scale Con-
volutional Feature-fusion Module (CCFM) is introduced to improve the
model’s performance in dealing with multi-scale underwater targets. The
CCFM enhances the detection accuracy of small targets while reducing
the number of parameters and computation. Then, the detection perfor-
mance and efficiency is improved by introducing a dynamic head to unify
the task-awareness, scale-awareness, and spatial-awareness. The dynamic
head effectively enhances the clarity of images. Subsequently, the Mixed
Local Channel Attention (MLCA) is introduced. MLCA enhances the
network’s ability to extract key features while ensuring the computa-
tional and detection efficiency of the model. The experimental results
show that compared with the original model (yolov8n) on the publicly
available underwater target detection dataset RUOD without using pre-
trained weights. The following is an analysis of the data. The map50
reaches 85% and improves by 0.8%, the map50-95 improves by 0.9%, the
amount of parameters is reduced by 21.4%, the amount of computation
is reduced to 7.4 GFLOPs, and the size of the model is reduced to 5.1M.
In this paper, the original yolov8 is lightened as well as the accuracy is
improved, and the improved algorithm is well suited for target detection
in underwater robots.

Keywords: yolov8 · lightweight · cross-scale convolutional feature-fusion
module · mixed local channel attention · dynamic head.

1 Introduction

Underwater target detection technology is a key marine technology whose back-
ground covers a wide range of fields, including marine target detection,environmental
monitoring, military applications and underwater search and rescue [1].
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In recent years, target detection technology has developed rapidly, and tradi-
tional target detection algorithms were once all the rage [2]. Although traditional
underwater target detection algorithms perform well, there are still many limi-
tations. On the one hand, due to the need to use a sliding window to generate
candidate regions, a large number of candidate regions may be generated for
large images, resulting in increased computation. On the other hand, the manu-
ally designed feature extractor may not be able to adequately represent the target
features, which subsequently affects the detection accuracy. The aforementioned
reasons have led to the gradual replacement of traditional target detection al-
gorithms by target detection algorithms based on deep learning. Currently pop-
ular deep learning target detection algorithms are categorized into two-stage
and single-stage target detection algorithms [3]. The two-stage target detection
algorithm generates candidate regions first, and then classifies and localizes ac-
cording to the generated candidate regions, and the classic algorithms have the
R-CNN series [4]. Although the two-stage target detection algorithm achieves
higher accuracy, it requires a significant amount of computational resources.
Therefore, the efficiency of this algorithm is relatively low, making it unsuitable
for underwater robots that have strict demands on lightweight and real-time
performance. The single-stage target detection algorithm can directly predict on
the input image, without generating candidate regions [5]. Although it has lower
accuracy compared to two-stage object detection algorithms, single-stage object
detection algorithms are more faster and lightweight. Due to its faster speed,
the single-stage algorithm is suitable for underwater robots with high demands
on computation and real-time performance.

Yolo, as a classic single-stage algorithm, is applied to underwater object de-
tection. Yang Fan et al. [6] introduced the SPD-D3 module in yolov5 [7] and
added Effective Channel Attention mechanism (ECA), to the detection head.
Applied to underwater target detection, it successfully improved detection ac-
curacy, but the FPS was somewhat reduced. Tang Luting et al. [8] introduced
a new Partial Convolution (PConv) into yolov7 [9] for underwater target detec-
tion. Although the detection accuracy has been greatly improved, the number
of parameters, the amount of computation, and FPS have not been effectively
improved. Although these algorithms ensure detection accuracy, they are not
lightweight and real-time enough. Underwater robots not only require high de-
tection accuracy, but also require lightness and real-time performance. Therefore,
there is still much room for improvement in applying these algorithms to un-
derwater robots and completing real-time tasks. Since yolov8 is able to balance
precision, lightweight, and real-time performance very well, so this article uses
it for improvement.

Considering the unique characteristics of underwater environments and the
high demand for lightweight and real-time performance in underwater robots, we
have chosen to improve the yolov8n algorithm. Our main focus is on reducing the
number of parameters and computations while maintaining accuracy, enhancing
real-time performance, and minimizing the model size. The key work presented
in this paper is as follows:
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1.Adding the CCFM into the neck of the network enables fusion of features
from different scales. This fusion improves the model’s performance when deal-
ing with multi-scale underwater targets, enhances the ability of detecting small
underwater targets, and reduces the number of parameters and computation.2.A
novel dynamic head is introduced to replace the original detection head. It in-
tegrates three attention mechanisms of task perception, scale perception, and
spatial perception into the detection head. Each attention module focuses on
one dimension, making the feature maps clearer and improving the detection ca-
pability of underwater targets. 3.Employing the lightweight Multi-Level Context
Attention (MLCA) module to ensure the computational and detection efficiency
of the model. It enhances the ability of the network to capture key features of
underwater targets, improving the network’s feature selection capability.

2 Yolov8 Description

Yolov8, building upon the success of previous yolo series algorithms, introduces
a series of further improvements [10]. The main structure of yolov8 is divided
into two parts: the backbone and the head, without a separate neck part, as the
content of the neck is integrated into the head part.

In the Backbone section, yolov8 replaces the C3 module used in yolov5 with
the C2f module and references several bottleneck modules to improve the non-
linear representation of the model. And the split module splits the feature map
into two parts to reduce the number of parameters and computation [11]. The
Head part, replacing the coupling head in yolov5 with a decoupling head contain-
ing two branches, one predicting location and one predicting category. Enables
more efficient handling of semantic information at different scales and finenesses
by separating feature extraction from pixel-level prediction. Yolov8 discards the
previous anchor-based approach used by yolov5 and changes to use anchor-free,
which gets rid of the dependence on the a priori knowledge in the dataset. And
significantly improves the expressiveness and generalization potential of ’object
shapes’, which enables it to detect moving objects, objects of varying sizes, and
also shows better performance and better flexibility in dealing with occluded
objects [12]. Finally, PAN-FPN removes the convolutional module from the up-
sampling, reducing the computational effort. For the loss function part, yolov8
uses VFL loss as the classification loss, and DFL loss and CIOU loss as the
bounding box regression loss. Yolov8’s sample matching uses an innovative task
alignment assignment mechanism. It scores based on the alignment degree be-
tween the labeled bounding boxes and the predicted bounding boxes, assigning
anchor points to specific labeled bounding boxes [13]. The task alignment assign-
ment mechanism significantly reduces the error between labeling and prediction,
thus improving the accuracy of the model. For the training part, yolov8 turned
off Mosaic data augmentation in the last 10 epochs of training, a method that
effectively improves model accuracy.

The aforementioned improvements make yolov8 more suitable for underwater
target detection. However, there are still some areas that require further opti-
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Fig. 1: Structure of improved yolov8 network

mization. For underwater robots with limited computing power, there are high
demands on the lightweight, real-time performance, and accuracy of the target
detection model. To better suit underwater robots, this paper will improve the
yolov8 algorithm from these aspects.

3 Improved yolov8

Given the limited computing power of underwater robots, the target detection
model applied to them needs to be more lightweight and have higher real-time
performance. To address these issues, the following details the improvements
made to yolov8 in this paper. The network structure diagram of the improved
yolov8 is shown in Figure 1.



Lightweight underwater target detection algorithm based on improved yolov8 5

3.1 Lightweight Feature Fusion Module

The Cross-scale Convolutional Feature-fusion Module(CCFM) is a lightweight
cross-scale feature fusion module that employs lightweight convolutions [14]. By
reducing the number of channels, it decreases the number of parameters and com-
putations, ensuring computational efficiency while improving the performance of
target detection. Given the limited computational capacity of underwater robots,
it is difficult for them to run large models in real-time. The lightweight charac-
teristics of the feature fusion module CCFM enable it to reduce the number of
parameters and computations while maintaining detection accuracy and enhanc-
ing detection efficiency. The CCFM module enables the algorithm to be easily
deployed on underwater robots and complete underwater target detection tasks
in real-time. It fully meets the requirements of underwater robots for detection
tasks.

CCFM employs a series of convolutional layers designed with lightweight
techniques. It extracts key information from the input feature maps, effectively
reducing the computational complexity. After feature extraction, we utilize a
lightweight convolutional operation to integrate the feature maps. By adopting
1x1 convolutional kernels, we successfully achieve the horizontal fusion of feature
maps of different scales, further enhancing the representation ability of features.
The fused feature maps are then passed through a series of 1x1 convolutional
layers for further processing. These layers further enhance the representation
ability of the feature maps, providing more accurate and rich feature information
for subsequent object detection tasks. Finally, the processed feature maps are
passed to the subsequent detection head for object prediction and recognition.
This step is crucial in transforming the feature information into actual object
detection results.The calculation process of CCFM is as follows:

output = CCFM(F1, F2, F3). (1)

Among them, the structures of F1, F2, F3 and CCFM are labeled in Figure
1.

CCFM utilizes multiple Fusion modules, which fuse multi-scale features. It
gradually integrates multi-scale features from the bottom to the top in the back-
bone network, and ultimately generates fused features rich in strong semantic
information. This provides strong support for subsequent underwater target de-
tection tasks. The Fusion Block module is adopted in CCFM to complete multi-
scale fusion operations. When applied in underwater target detection, it can
balance the detection effect of targets of different scales very well. In addition,
it improves the detection effect of different targets, especially for small targets.

3.2 New Dynamic Detection Head

The detection head part adopts a new type of dynamic detection head, named
Dynamic Head(dyhead). In underwater feature maps, there are often a lot of
redundancies and noises. In order to address such issues, this detection head
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Fig. 2: Structure of Dynamic head

has been proposed. Its innovation lies in integrating the three key elements of
scale perception, spatial perception, and task perception into a unified framework
[15]. The attention mechanism is effectively applied in the target detection head,
improving the performance and efficiency of target detection, especially in terms
of accuracy. Its structural diagram is shown in Figure 2.

After being processed by the feature fusion module, the feature maps are
then passed through the scale-aware, spatial-aware, and task-aware attention
modules. Each attention mechanism focuses on only one dimension, making the
feature maps clearer and more focused.

The calculation process of Dynamic Head is as follows:

Output(I) = AC (AS (AL(I) · I) · I) · I (2)

Among them, the input feature tensor I ∈ RL×S×C , and AC , AS and AL

represent task-aware attention, spatial-aware attention, and scale-aware atten-
tion respectively.

The spatial-aware attention module focuses attention on discriminative re-
gions that consistently exist across spatial locations and feature levels. First,
we utilize deformable convolution techniques to sparsify attention learning, en-
abling the model to focus more on key regions. Subsequently, we further integrate
feature information from different levels at the same spatial positions, leverag-
ing multi-scale features to improve the detection efficiency of objects of varying
sizes.The calculation process of spatial-aware attention is as follows:

AS(I) · I = 1
L

∑L
l=1

∑K
k=1 wl,k · I (l; pk +∆pk; c) ·∆mk (3)

Among them, L stands for layer, K represents the number of sparse sampling
locations, pk + ∆pk is a shifted location by the self-learned spatial offset ∆pk to
focus on a discriminative region and ∆mk is a self-learned importance scalar at
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location pk. Both are acquired through a learning process that takes into account
the input features extracted from the median layer of the feature hierarchy I.

The task-aware attention module utilizes a switch control mechanism. We
can automatically select whether to learn the activation threshold based on task
requirements. It enables the intelligent opening or closing of channels to adapt to
different task scenarios. Through the Task-Aware Attention module, the feature
maps are able to generate unique activation patterns for different downstream
tasks, thus achieving targeted feature extraction and representation. The calcu-
lation process of task-aware attention is as follows:

AC(I) · I = max
(
α1(I) · Ic + β1(I), α2(I) · Ic + β2(I)

)
(4)

Among them, Ic is the feature slice at the c− th channel, [α1, α2, β1, β2]T =
θ() is a hyper function that learns to control the activation thresholds. θ() ini-
tially employs a global average pooling across the L × S dimensions, aiming to
decrease the data’s dimensionality. Following this, it incorporates two sequen-
tially arranged fully connected layers, accompanied by a normalization layer.
Finally, it applies a shifted sigmoid function to normalize the output to [1, 1].

The scale-aware attention module can dynamically fuse features of differ-
ent scales based on the importance of semantic information at each scale, en-
abling more precise feature extraction and fusion operations. Under the effect of
the scale-aware attention module, the feature maps exhibit higher sensitivity to
changes in different scales. This successfully enhances the model’s ability to rec-
ognize multi-scale targets. When applied in underwater target detection, it can
achieve good detection results for both large and small targets.The calculation
process of scale-aware attention is as follows:

AL(I) · I = σ

f

 1

SC

∑
S,C

I

 · I (5)

Among them, f() is a linear function, and σ() is a hard-sigmoid function.

3.3 Mixing Local Channel Attention

The Mixed Local Channel Attention (MLCA) is a lightweight attention mecha-
nism that improves detection accuracy while maintaining almost the same num-
ber of parameters and computational complexity. This module integrates channel
information with spatial information, while also combining local and global fea-
tures. It effectively enhances the expressive ability of the network, thus improving
its performance [16]. Its structural diagram is shown in Figure 3.

The input feature map first undergoes Local Average Pooling(LAP) to ag-
gregate local regional features. Then, the output feature map is divided into two
branches for further processing. One branch is passed to Global Average Pool-
ing(GAP) to capture the spatial information of the entire feature map, generat-
ing a compact feature representation. Feature rearrangement is then performed,
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Fig. 3: Structure of MLCA

followed by a one-dimensional convolution to compress the feature channels, re-
ducing the number of parameters and computational cost. The processing of this
branch is completed through an inverse pooling operation [17]. The other branch
first undergoes feature rearrangement, followed by a one-dimensional convolu-
tion to compress the feature channels, reducing the number of parameters and
computational cost. Feature rearrangement is then performed to complete the
processing of this other branch.

After both branches have been processed, the results from global pooling
and local pooling are summed. This integrates global context information and
is then restored to the original spatial dimension through an inverse pooling op-
eration. Finally, the result from the previous step is multiplied with the original
input feature. This process essentially serves as a feature screening mechanism
that enhances the importance and attention to valuable features of underwater
targets.

4 Experimental Design and Result Analysis

4.1 Experimental Details

Experimental Environment and Model Hyperparameter Settings Ta-
ble 1 below describes the hyperparameter configuration of the environment and
model for this experiment.

Experimental Data Set The experimental dataset used in this thesis is Re-
thinking general Underwater Object Detection (RUOD) [18]. The RUOD dataset
consists of a total of 14,000 images, specifically divided into 9,800 training im-
ages and 4,200 test images, with a total of 74,903 labeled objects. The dataset
contains 10 common aquatic categories, namely holothurian, echinus, scrollop ,
starfish, fish, corals, diver, cuttlefish, turtle, jellyfish . The dataset has rich bi-
ological species and complex environmental backgrounds, which can be used to
comprehensively evaluate the performance of target detection algorithms.
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Table 1: Experimental environment and parameters
Parameter Configuration

CPU 12 vCPU Intel(R) Xeon(R) Platinum 8255C CPU 2.50GHz
GPUs RTX 3090 (24GB)
CUDA 11.1

Operating System Ubuntu 18.04
Python 3.8.10
PyTorch 1.8.1

Momentum 0.937
Weight Decay 0.0005

Batch Size 64
Learning Rate 0.01

Image Size 640
Epochs 300

Model evaluation indicators Considering that the target detection algorithm
applied to underwater robots needs to take into account both detection accuracy
and model lightweighting, this experiment chooses to use Precision (P), Recall
(R), mean Average Precision (mAP), Parameter quantity (Parameters), com-
putational volume Giga FLoating-point Operations Per second (GFLOPs), and
model size as the main evaluation indexes for the performance of the improved
model. The calculation formula is as follows:

P =
TP

TP + FP
, (6)

R =
TP

TP + FN
, (7)

AP =

∫ 1

0

P (R)dR, (8)

mAP =

∑n
i=1 APi

n
. (9)

Among them, TP denotes a positive sample predicted to be a positive case,
FP denotes a negative sample predicted to be a positive case, FN denotes a posi-
tive sample predicted to be a negative case, P denotes precision (check accuracy),
R denotes recall (check completeness), P(R) denotes the value as a function of
the curve with recall as the horizontal axis and precision as the vertical axis,
P-R denotes the number of categories, AP denotes the average precision, and
mAP denotes mean average precision [19].

4.2 Comparison Of ablation experiments

In order to verify the validity of this experimental improvement, ablation ex-
periments were done here for validation [20]. It is worth mentioning that the
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Table 2: Comparison of Ablation experiment results
Model CCFM dyhead MLCA Parameters GFLOPs FPS Map50 Model Size

yolov8-n × × × 3.01M 8.1 588 84.2% 6.15MB
model a

√
× × 1.97M 6.6 625 83.9% 4.12MB

model b ×
√

× 4.76M 14.7 313 86.0% 9.60MB
model c × ×

√
3.01M 8.1 625 84.6% 6.16MB

model d
√ √

× 2.36M 7.4 357 84.9% 4.93MB
model e

√
×

√
1.97M 6.7 625 84.0% 4.13MB

model f ×
√ √

2.51M 7.9 370 84.8% 5.20MB
model g

√ √ √
2.36M 7.4 385 85.0% 4.93MB

experimental environments used here are consistent to minimize the influence of
irrelevant variables on the experiments. The test benchmark is YOLOv8n, with
different improvement modules added separately. The results of the ablation
experiments are shown in Table 2.

It can be seen from the experimental results in the table that the improvement
has significant effects in terms of lightweight and accuracy. The introduction of
the lightweight feature fusion module CCFM has made the lightweight improve-
ment effect obvious. The number of parameters, computation, and model size
have all been significantly reduced, with a slight improvement in inference speed.
This is of great help to the deployment and real-time operation of underwater
robots. However, CCFM will slightly reduce mAP. To improve detection accu-
racy, a new dynamic detection head, Dynamic Head, is introduced. In terms of
accuracy, such as mAP50, mAP50-95, precision, and recall rate, there have been
significant improvements, especially mAP50 has increased by 1.8%. However, the
improvement in the number of parameters, computation, inference speed, and
model size is not satisfactory, which is difficult to meet the task requirements of
underwater robots. To solve this problem, we integrated CCFM with Dynamic
Head. It has excellent detection results for multi-scale targets, especially small
targets. After integration, both the number of parameters and computation have
been reduced, further adapting to the low computing power characteristics of un-
derwater robots. In addition, the model size has also been significantly reduced,
providing convenience for deployment on underwater robots. To improve the ro-
bustness of the network, a lightweight hybrid local channel attention mechanism,
MLCA, is introduced. It combines local and global features while paying atten-
tion to the overall and details of the image. There is a slight increase in inference
speed and mAP, while the number of parameters, computation, and model size
remain basically unchanged. After integrating these modules to obtain the algo-
rithm in this paper, each improved module has played its own advantages. Both
lightweight and detection accuracy have been improved, which can well adapt
to the working requirements of underwater robots.
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Table 3: Comparison of ablation experiment results
Model Parameters GFLOPs FPS Map50 Model Size

RT-DETR-l 28.46M 100.6 185 84.6% 56.3MB
yolov5-n 1.78M 4.3 118 83.2% 3.86MB
yolov6-n 4.63M 11.3 578 84.4% 40.2MB

yolov7-tiny 6.03M 13.1 313 85.3% 12.10MB
yolov8-n 3.01M 8.1 588 84.2% 6.15MB

yolov8-n-CCFM-dyhead-MLCA 2.36M 7.4 385 85.0% 4.93MB

4.3 Comparison of Different models

To validate the effectiveness of the algorithm presented in this paper, it is com-
pared with yolov5, yolov6 [21], yolov7, and yolov8. Here, it is ensured that the pa-
rameters such as experimental environment, dataset, number of training rounds,
learning rate, etc. are consistent, and the possibility of irrelevant variables af-
fecting the experiments is minimized as much as possible. The results of the
comparison experiments are shown in Table 3.

As can be seen from Table 3, using RUOD dataset, The improved yolov8
algorithm in this paper is more suitable for underwater application scenarios.
Considering parameters, computation, inference speed, and mAP comprehen-
sively, the algorithm presented in this paper performs well. While RT-DETR
excels in achieving remarkable accuracy, it also introduces an increased number
of parameters and computational intricacies, ultimately leading to a substantial
degree of redundancy. Yolov5 has fewer parameters and computations, seemingly
more lightweight. However, its inference speed lags behind yolov6, yolov7 and
yolov8, making it difficult to meet the high real-time requirements of underwa-
ter robots. Yolov6’s mAP improvement is not significant, and it has significant
disadvantages in terms of lightweight, so it is excluded first. Yolov7-tiny boasts
the highest detection accuracy. However, due to its excessive number of parame-
ters and computations, as well as its inferior inference speed, it is also excluded.
Although yolov5’s parameters and computations are slightly lower than yolov8,
its mAP and real-time performance are inferior. It is difficult to meet the re-
quirements of underwater robots for lightweight, real-time, and detection accu-
racy. This paper improves the yolov8 algorithm, further reducing the number of
parameters, computations, and model size, while also increasing the mAP. Al-
though the inference speed is slightly lower than the original model, it can still
meet the real-time requirements underwater. In summary, while meeting the
requirements of real-time detection, the algorithm in this paper has improved
the detection accuracy by 0.8% compared with the baseline model, reduced the
number of parameters by 21.6%, decreased the amount of computation by 8.6%,
and shrunk the model size by 19.8%. This has improved the target detection
capability of underwater robots.

Here is a selection of comparison charts showing the detection results of
different algorithms, as illustrated in Figure 4. By analyzing the detection result
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charts, it can be found that the improved algorithm has certain advantages in
detecting small underwater targets and occluded objects in the water.

(a) RUOD (b) yolov5

(c) yolov6 (d) yolov7

(e) yolov8 (f) ours

Fig. 4: Comparison of detection results of different algorithms τ

5 Conclusion

There are numerous challenges facing the current target detection algorithms
applied to underwater robots. The main issues include the difficulties in de-
ploying overly large models, failure to meet real-time performance standards
and low detection accuracy for small underwater targets. This paper studies
a lightweight object detection algorithm suitable for underwater environments
and improves yolov8. The improved algorithm better meets the detection accu-
racy and lightweight requirements of underwater robots. The introduction of a
lightweight cross-scale feature fusion module effectively reduces the number of
parameters and computations, while slightly improving the inference speed. A
new dynamic detection head, Dynamic Head, is adopted, which applies multiple
attention mechanisms to the detection head. Ensuring that the computational
cost and number of parameters are within an acceptable range, while also improv-
ing image clarity and detection accuracy for multi-scale targets. A lightweight
mixed local channel attention mechanism is introduced to further enhance the
detection capability for small objects. From the results, there is also some en-
hancement in real-time performance. Integrating the above modules into yolov8
significantly reduces the number of parameters and computations. At the same
time, it reduces the model size, facilitating the deployment of the algorithm
to underwater robots. Additionally, the detection performance for small objects
and occluded objects has been improved. The improved algorithm achieves both
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lightweight and accuracy. Compared to the original yolov8, the improved algo-
rithm in this paper is more suitable for application to underwater robots or
underwater scenes.
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