
Feasibility Analysis of Optimization Models for Natural 

Gas Distribution Networks Using Machine Learning 

Junhao Liu1 and Xiaoyong Gao 1 and Xiaozheng Chen1 

 
1 China University of Petroleum, Beijing, Beijing 102249, China  

Abstract. As natural gas pipeline networks expand, the complexity of pipeline 

scheduling models grows, making feasibility analysis increasingly difficult. This 

study focuses on the feasibility analysis of optimization models for natural gas 

distribution network scheduling, treating it as a classification problem. Models 

grounded in traditional neural networks, parallel branch neural net-works, and 

graph neural networks are developed and assessed. Two distinct scales of natural 

gas distribution networks are explored by collecting a limited dataset of sample 

cases to train and validate the proposed feasibility analysis models through em-

pirical case studies. The results demonstrate that the parallel branch neural net-

work exhibits superior predictive performance. Additionally, this study intro-

duces an innovative methodology for traceability diagnosis of infeasible cases, 

offering a practical framework for engineering applications. 
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1 Introduction 

Natural gas, characterized as a low-carbon, clean, and high-quality energy source, oc-

cupies a significant position within the global energy structure. With increasing envi-

ronmental awareness and rising energy demands, the consumption of natural gas has 

steadily escalated. According to the International Energy Agency, natural gas is pro-

jected to account for 25% of the global energy demand by 2040, positioning it as the 

second-largest energy source following crude oil [1]. Due to its efficiency, cost-effec-

tiveness, and reliability, pipelines have become the essential mode of transportation 

linking gas sources to consumer markets. As per statistics from the Statista database[2], 

China leads globally in the operation of natural gas pipelines. As of February 2024, 

China's natural gas network comprises 442 functional pipelines, including various pipe-

line segments, with an additional 302 pipelines either proposed or under construction. 

The total number of operational natural gas pipelines worldwide exceeds 1,500. 

Over the past decades, scholars have proposed numerous optimization algorithms to 

address a wide range of problems. Dynamic Programming (DP), Generalized Reduced 

Gradient (GRG), and Linear Programming (LP) are three commonly used precise algo-

rithms for optimizing natural gas distribution pipeline scheduling models. Moreover, in 

large-scale optimization, emerging heuristic algorithms such as Genetic Algorithms 

(GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), and Particle 

Swarm Optimization (PSO) have shown significant advantages over traditional precise 
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methods. These heuristics offer novel approaches and tools for optimizing natural gas 

pipeline operations. 

 

Fig. 1. Optimization algorithms applied to natural gas distribution network optimization models 

However, the implementation of optimization algorithms assumes the existence of fea-

sible solutions. Without a feasible solution, even the most advanced algorithms are in-

effective. Additionally, actual production scheduling is a complex, multifaceted, and 

dynamic system, where feasible solutions in mathematical models are not always guar-

anteed. In engineering practice, determining model feasibility and identifying conflict-

ing constraints when a model is infeasible are time-consuming and challenging tasks, 

which limits their practical application. Consequently, the feasibility analysis of opti-

mization models has become increasingly crucial, especially for practical engineering 

optimization problems, and is now an indispensable part of engineering applications. 

John W. Chinneck in his book "Feasibility and Infeasibility in Optimization"[3] poses 

several pertinent questions: What happens when algorithms fail to find an initial feasi-

ble solution? How do we identify the source of the problem? How can we amend the 

model? These questions also guide the feasibility analysis of the natural gas sales pipe-

line network model discussed in this paper. By analyzing the feasibility of the model, 

identifying reasons for its infeasibility, and modifying the model to ensure it has a fea-

sible solution domain, this process constitutes the primary research approach and con-

tent of this study. 

The remainder of this paper is organized as follows. Section II introduces the back-

ground of natural gas distribution network scheduling optimization issues, research ap-

proaches to feasibility analysis, and methods for extracting characteristic data. Section 

III designs feasibility analysis models based on traditional neural networks, parallel 

branch neural networks, and graph neural networks, describing the structures of these 

models. Section IV presents case studies demonstrating the performance of the pro-

posed models and introduces specific methods for traceability diagnosis of infeasible 

cases. The conclusions and future work are discussed in Section V. The structure of this 

paper is illustrated in Figure 2. 
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Fig. 2. The structure of this paper 

2 Background 

2.1 Problem definition 

Natural gas pipeline networks typically comprise gathering pipelines, transmission 

pipelines, distribution pipelines, compressors, control valves, and resistance compo-

nents. Gathering pipelines collect raw natural gas from production wells and transport 

it to processing plants. After impurities are removed, the transmission pipelines deliver 

the processed gas to city gate stations, often located thousands of kilometers away. 

Subsequently, the distribution pipeline distributes the natural gas to customers. Due to 

frictional losses during transportation, compressors are installed in series or parallel to 

compensate for the pressure loss of the gas. Control valves are used to regulate the 

demand for natural gas by customers. The structural topology of the natural gas distri-

bution network is illustrated in Figure 3. 

When optimizing scheduling strategies for natural gas distribution networks, con-

structing an accurate mathematical model is essential. The mathematical model of a 

natural gas sales network typically includes constraints such as upper and lower limits 

on gas flow, material balance constraints within the pipeline network, physical capacity 

constraints of storage components, pipeline pressure constraints, and an objective func-

tion. Since the focus of this project is on the feasibility analysis of the model rather than 

optimizing economic benefits, this paper adopts a fictitious objective function to sim-

plify the solution process. In this scenario, the objective function can be set as minimize 

obj=0. The primary purpose of this setting is to enable the solver to quickly find a 
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feasible solution that meets all constraints, rather than seeking an optimal solution. This 

approach allows for the rapid collection of sample case data on the feasibility/infeasi-

bility of labels. 

 

 

Fig. 3. The structural topology of the natural gas distribution network 

2.2 Feasibility analysis 

The feasibility analysis of the model involves two key components. The first is the 

feasibility assessment, which determines whether a feasible initial solution exists, con-

firming the model's viability. The second component is the infeasibility analysis, which 

identifies the root causes of infeasibility and suggests modifications to the model to 

generate feasible solutions. 

In the context of design variables, feasibility analysis seeks to determine whether a 

process can satisfy all constraints within an uncertain space by adjusting control varia-

bles. This mathematical formulation was initially proposed by Grossmann and col-

leagues in 1983[4], who introduced a systematic approach to handle the optimization 

issues related to design and control variables. More recent research by Wang and Iera-

petritou in 2017[5] presented a feasibility analysis based on surrogate models, which not 

only enhances prediction accuracy but also effectively identifies and confirms the fea-

sibility regions of the process within a limited sampling budget. In 2019, Dias and Iera-

petritou [6] developed a framework interpreting feasibility analysis as a classification 

problem, employing Support Vector Machines, Neural Networks, and Decision Trees 

to define a predictor that classifies any point in the uncertain space as feasible or infea-

sible. Chinese scholar Rong Han [7] proposed a branch-and-bound approach for feasi-

bility analysis based on a 0-1MILP model with the context of refinery optimization 

scheduling, providing a relatively systematic analysis of the model's feasibility. 

This paper treats the feasibility analysis of the natural gas distribution network 

scheduling optimization model as a classification problem, utilizing machine learning 

methods to determine feasible regions for scheduling issues. To comprehensively as-

sess the performance of the feasibility analysis models developed in this paper, we 

adopt feasibility metrics proposed by Wang and Ierapetritou in 2017[8].The entire range 

of uncertainty parameters is divided into four regions as shown in Figure 4: CF 
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(Correctly Feasible) represents the region correctly predicted as feasible by the model; 

CIF (Correctly Infeasible) denotes the region correctly predicted as infeasible; ICF (In-

correctly Feasible) indicates the region predicted as feasible but is actually infeasible; 

ICIF (Incorrectly Infeasible) refers to the region predicted as infeasible but is actually 

feasible. 

 

Fig. 4. Four regions in the feasibility analysis 

In the diagram, the left image (a) represents the feasible region within the uncertain 

space as a shaded blue area. The right image (b) shows the four evaluation metrics for 

the model in the given feasible region. Based on the aforementioned definitions, four 

metrics are derived to evaluate the accuracy of the model: 

𝐶𝐹% =
𝐶𝐹

𝐶𝐹+𝐼𝐶𝐼𝐹
× 100                 (1) 

𝐶𝐼𝐹% =
𝐶𝐼𝐹

𝐶𝐼𝐹+𝐼𝐶𝐹
× 100                 (2) 

𝑁𝐶% =
𝐼𝐶𝐹

𝐼𝐶𝐹+𝐶𝐹
× 100                 (3) 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 =
𝐼𝐶𝐹+𝐼𝐶𝐼𝐹

𝐶𝐹+𝐶𝐼𝐹+𝐼𝐶𝐹+𝐼𝐶𝐼𝐹
× 100                 (4) 

The first two metrics, CF% and CIF%, describe the extent to which the uncertain pa-

rameter space has been correctly explored and classified in terms of feasibility. CF% 

indicates the percentage of the feasible region in the original space that is correctly 

identified by the classifier; CIF% indicates the percentage of the infeasible region in 

the original space that is correctly identified by the classifier. The third metric, NC%, 

represents the percentage of the feasible region overestimated by the classifier and is 

used to evaluate the conservativeness of the classifier's predictions. The fourth metric, 

Total Error, measures the total number of misclassifications relative to the size of the 

test set. When CF% and CIF% approach 100%, and NC% and Total Error approach 0, 

the feasibility analysis model is demonstrated to accurately approximate the feasible 

region. 

2.3 Feature selection 

In the feasibility analysis of natural gas sales network scheduling optimization models, 

selecting characteristic data is a crucial step, especially when applying machine 
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learning techniques for prediction and classification. The primary goal of feature selec-

tion is to identify the most influential subset of features from the original dataset that 

impacts the label data 𝑦 (i.e., whether the network has a feasible solution). This process 

not only enhances the model's predictive accuracy but also significantly reduces the 

computational complexity of model training and improves interpretability. 

This paper conducts a chi-square test on variable data within the network (such as 

the upper and lower limits of pipeline flow) and model label data (feasible or infeasi-

ble). The chi-square test is a method used to examine the association between two cat-

egorical variables. In this study, we employ the chi-square test to assess the correlation 

between various features and the feasibility (label) of the network scheduling model. 

Specifically, our aim is to identify which features exhibit a significant statistical asso-

ciation with the model's ability to find feasible solutions. Here are the steps involved in 

the chi-square testing process: 

 

Fig. 5. The steps of the chi-square test 

In this section, we first extract the variable data and label data from the mathematical 

model and set up hypothesis testing to assume that the feature data and label data are 

independent of each other. Next, we insert each feature data and corresponding label 

data into the chi-square statistical formula to calculate the chi-square value 𝑥2 and de-

grees of freedom 𝜎, which typically equals (number of categories -1)×(number of fea-

tures -1).The chi-square statistic formula is shown below: 

𝑥2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
                     (5) 

where 𝑂𝑖  is the observed frequency, and 𝐸𝑖  is the expected frequency under the as-

sumption that the feature and label are independent. A larger chi-square statistic for a 

feature indicates a stronger correlation between that feature and the label. Based on this, 

we extract the characteristic data of the model. 
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3 Feasibility Analysis Model Design 

In this chapter,we approach the feasibility analysis of natural gas distribution network 

scheduling optimization as a classification problem. Three models have been developed 

for this purpose: a traditional neural network, a parallel branch neural network, and a 

graph neural network. These models assess the feasibility of optimization solutions 

across different scales in practical applications. 

3.1 Design of Feasibility Analysis Model Based on Traditional Neural 

Networks 

This paper initially employs a traditional neural network to identify feasible regions for 

scheduling. The structure of the model consists of an input layer, hidden layers, a Drop-

out layer, and an output layer, as illustrated in Figure 6. In the input layer, neurons 

multiply each input by a weight 𝑤𝑖𝑛𝑝𝑢𝑡 ∈ 𝑅1×𝑁 and add a bias term 𝑏𝑖𝑛𝑝𝑢𝑡 ∈ 𝑅1×𝑁, 

which is then passed through a "ReLU" activation function to serve as the input for the 

hidden layers. The ReLU function, short for Rectified Linear Unit, effectively prevents 

the problem of vanishing gradients and enhances the convergence efficiency of the gra-

dient descent method. It is one of the most widely used activation functions today. The 

formula for the ReLU function is as follows: 

𝑓(𝑥) = {
𝑥     𝑥 ≥ 0
0     𝑥 < 0

                       (6) 

The hidden layers of the model consist of three fully connected layers, where each neu-

ron's input is successively multiplied by hidden weights 𝑤ℎ𝑖𝑑𝑑𝑒𝑛  and hidden biases 

𝑏ℎ𝑖𝑑𝑑𝑒𝑛, and processed through a ReLU activation function to serve as the input for the 

subsequent layer. Additionally, during the training of neural networks, models are 

highly susceptible to overfitting. To mitigate this issue, a Dropout layer is incorporated 

between the hidden layers and the output layer, effectively reducing overfitting and 

providing a degree of regularization. In this project, a dropout rate of 0.3 is set, deac-

tivating approximately 30% of the neurons randomly to prevent model overfitting. The 

structure diagram of traditional neural network model is illustrated in Figure 6. 

 
Fig. 6. Structure diagram of traditional neural network model 
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Finally, the output layer consists of two neurons, utilizing the Softmax activation func-

tion. The Softmax function is a normalized exponential function commonly employed 

in multi-class classification problems, allowing model outputs to be interpreted as prob-

ability distributions. In this model, the design of the output layer enables the differen-

tiation between two states: feasible or infeasible for the scheduling problem. The for-

mula for the Softmax function is as follows: 

𝑝(𝑥) =
1

1+𝑒−𝑥                         (7) 

3.2 Design of Feasibility Analysis Model Based on Parallel Branch Neural 

Networks 

The second method of feasibility analysis employed in this study utilizes a Parallel 

Branch Neural Network (PBNN) architecture to delineate the feasible regions for 

scheduling tasks. A PBNN is characterized by a neural network structure with multiple 

independent branches that process input data simultaneously. This design allows the 

network to learn different types of features concurrently across branches, enabling more 

effective handling of complex or heterogeneous datasets. 

In the proposed PBNN model for feasibility analysis, the network receives 𝑛 distinct 

types of input data from various segments of the natural gas distribution network. For 

example, inputs pertaining to gas sources include parameters such as "maximum gas 

source flow" and "minimum gas source flow." Inputs from the client side encompass 

"maximum client flow," whereas pipeline-related inputs cover "maximum forward 

flow," "minimum forward flow," "maximum reverse flow," and "minimum reverse 

flow," among others. Each branch of the network processes the same feature data spe-

cific to each component type. The outputs from all branches are subsequently amalga-

mated into a unified feature vector through a concatenation operation. The final output 

layer employs a Softmax activation function to determine the class with the highest 

probability. To augment the generalization capability of the model and mitigate the risk 

of overfitting, a Dropout layer with a dropout rate of 30% is integrated. The architecture 

of the model is depicted in Figure 7. 

 
Fig. 7. Structure diagram of parallel branch neural network model 

This model design effectively addresses the complexity and diversity of the natural gas 

network by employing a PBNN architecture, where each branch is specialized to cap-

ture the essential features of different network components. This targeted approach en-

hances the model’s efficacy in extracting and utilizing information from each 
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component type, surpassing traditional single-network models. By integrating special-

ized branches, the model provides a robust framework for precise feasibility classifica-

tion, significantly improving prediction accuracy over conventional methods. This re-

finement in neural network design represents a major advancement in feasibility anal-

ysis for complex systems. 

3.3 Design of Feasibility Analysis Model Based on Graph Neural Networks 

The third method for feasibility analysis incorporates a Graph Neural Network (GNN) 

to delineate the feasible region for scheduling within the complex pipeline system. This 

approach conceptualizes the pipeline system as a graph, framing the feasibility analysis 

as a graph classification issue. Within this model, various components of the natural 

gas network, including clients, gas sources, pipelines, and regulating valves, are repre-

sented as nodes, while the physical interconnections between these components are de-

picted as edges. 

Each component's feature data is employed as node features, collectively comprising 

the feature matrix 𝑋 and the adjacency matrix 𝐴 to construct the dataset. These matrices 

are integral to the graph representation, enabling the GNN to process the intricate rela-

tionships and interactions within the network. 

 
Fig. 8. Structure diagram of graph neural network model 

 

The GNN model is designed with five graph neural network layers, each followed 

by a ReLU (Rectified Linear Unit) activation function. This configuration introduces 

non-linearity, enhancing the model's ability to capture complex relationships and fea-

ture propagation among nodes. Such an arrangement allows the network to assimilate 

the collective behavior of the nodes effectively. Following the node-level processing, a 

global mean pooling operation aggregates the features of individual nodes into a unified 
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representation of the graph's global features, categorized as feasible or infeasible. These 

global features are then processed through a linear layer, which outputs the graph clas-

sification prediction results. The structural schematic of this model is shown in Figure 

8. 

4 Case Analysis and Infeasibility Root Cause Diagnosis 

In this section, we demonstrate and validate the effectiveness of the three feasibility 

analysis models through specific case studies. Specifically, this chapter selects two nat-

ural gas sales network models of different scales (a small-scale model with 13 nodes 

and a large-scale model with 131 nodes) as the subjects of study. Through these two 

cases,we explore the performance differences of the models on datasets of varying 

sizes. For cases predicted as infeasible, we also perform detailed infeasibility root cause 

diagnoses to identify and analyze the key factors contributing to the infeasibility. 

4.1 Case Analysis of the 13-Node Natural Gas Distribution Network Model 

In this section, we first select a natural gas sales network model comprising 13 nodes. 

This model includes 11 customer nodes, 1 gas source node, 2 pipelines, and 10 regulat-

ing valve components. Utilizing the 'networkx' package from the Graph Neural Net-

work library, we render a visualization of the network's topology. The depicted topol-

ogy is then methodically compared with the actual structural diagram to ensure accu-

racy and consistency in representation, as illustrated in Figure 9. 

 
Fig. 9. Topology of the 13-node model 

This paper divides the collected 864 sample cases into training, validation, and testing 

sets in a 7:1:2 ratio, respectively. To identify the variables most relevant to predicting 

feasibility, chi-square testing is employed to determine specific feature input data. The 

output data consist of labels indicating whether the cases are feasible or infeasible, and 

each model is trained using the defined training dataset. During the training process, 

the three feasibility analysis models utilize the Adam optimization algorithm and em-

ploy sparse categorical cross-entropy as the loss function. Each model is configured 

with a batch size of 32 and is run for 300 epochs. The training results are depicted in 

Figures 11 and 12. 
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Fig. 10. Comparison of model training loss values 

 
Fig. 11. Comparison of model training accuracy 

We then input the test set data into the three trained feasibility analysis models and 

further evaluate their performance using feasibility metrics CF%, CIF%, NC%, and 

Total Error. The results are presented in Table 1. 

Table 1. Performance of different models in the test set. 

 CF% CIF% NC% Total Error 

PBNN Model 90.91 98.21 3.5 5.75 

TNN Model 89.09 96.61 7.54 5.78 

GNN Model 89.28 93.24 9.09 8.46 

According to the data in the table, the Parallel Branch Neural Network model demon-

strates the best predictive performance among the trained models when applied to the 

test set. Both CF% and CIF% are close to 100%, while NC% and Total Error approach 

0, indicating that this feasibility analysis model can accurately approximate feasible 

regions. The traditional neural network performs better than the Graph Neural Network, 

but both are overall less effective compared to the Parallel Branch Neural Network 

model. 

4.2 Case Analysis of the 131-Node Natural Gas Distribution Network Model 

This section features a case study analysis of a natural gas sales network model com-

posed of 131 nodes. The model includes 121 customer nodes, 10 gas source nodes, 53 
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pipelines, 3 compressors, 73 regulating valves, and 2 resistors among other compo-

nents. We have visualized the network topology of this model, and the resulting topol-

ogy diagram is compared with the actual structural diagram as shown in Figure 12. 

 
Fig. 12. Topology of the 131-node model 

In this study, 432 sample cases were collected and divided into training, validation, and 

testing sets in a 7:1:2 ratio, following the same training procedures. The training out-

comes are illustrated in Figures 13 and 14. 

 
Fig. 13. Comparison of model training loss values 
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Fig. 14. Comparison of model training accuracy 

Subsequently, we input the test set data into the three trained models mentioned above, 

compared the predicted results with the actual outcomes, and evaluated the performance 

of the feasibility analysis models using the feasibility metrics CF% (Correctly Feasi-

ble), CIF% (Correctly Infeasible), NC% (Necessarily Correct), and Total Error. The 

results are displayed in Table 2. 

Table 2. Performance of different models in the test set. 

 CF% CIF% NC% Total Error 

PBNN Model 92.85 94.91 10.34 5.74 

TNN Model 81.25 94.54 13.79 10.34 

GNN Model 91.07 93.24 8.92 7.69 

According to these results, although the accuracy of the three feasibility analysis mod-

els decreased as the scale of the natural gas network increased, the Parallel Branch 

Neural Network model still outperformed the other two neural network models in pre-

dictive performance. With a CIF% nearing 95% and a minimal Total Error, the model 

demonstrated commendable predictive accuracy. 

4.3 Infeasibility Root Cause Diagnosis 

This section employs the Irreducible Infeasible Subsystem (IIS) method for infeasibil-

ity root cause diagnosis. The goal is to identify an IIS from the set of infeasible con-

straints, localize and centralize the problem within the conflicting constraints of the IIS, 

and then seek model corrections within this relatively small set of constraints. 

Infeasibility root cause diagnosis is based on the aforementioned feasibility analysis. 

Each iteration requires invoking the feasibility analysis model, necessitating a very high 

accuracy for the feasibility analysis model. However, for any neural network prediction 

model, multiple iterations can cause the errors to gradually accumulate, ultimately lead-

ing to poor infeasibility diagnosis performance and inaccurate IIS identification. There-

fore, this study focuses only on identifying the category of the conflicting component, 

determining which type of component causes infeasibility. The best-performing model, 
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the Parallel Branch Neural Network feasibility analysis model, is used for infeasibility 

root cause diagnosis. The specific diagnostic process is as follows: 

1. For an infeasible case 𝑄, let 𝑞𝑖 represent the feature data of the 𝑖-th component 

of 𝑄. 

2. Temporarily expand or reduce the feature data 𝑞𝑖 in a direction that favors a 

feasible solution. 

3. Use the trained Parallel Branch Neural Network feasibility analysis model to 

assess the feasibility of the modified 𝑄′. 

4. If 𝑄′ is feasible, then 𝑞𝑖 is considered to be the cause of the infeasibility. 

5. If 𝑄′ remains infeasible, then 𝑞𝑖 is not considered the cause of the infeasibility. 

6. Iterate through all feature data to identify an IIS of the infeasible model. 

In this section, we perform an Infeasibility Root Cause Diagnosis on an infeasible 

13-node case to identify the component category responsible for the infeasibility. First, 

the trained PBNN model is used to determine whether the sample case is feasible. If the 

model identifies the case as infeasible, each component is examined individually. We 

iteratively adjust the feature data of each component in a direction that favors feasibil-

ity, either increasing or decreasing the relevant parameters.The modified case is then 

reevaluated using the model until it is classified as feasible.Through this process, we 

successfully identified that the infeasibility of the case was due to the gas source's max-

imum output being insufficient to meet the total customer demand. The corresponding 

program analysis results are shown in the figure 15. 

 
Fig. 15. Infeasibility Root Cause Diagnosis result graph 

By utilizing the aforementioned method, users can modify the data within the constraint 

conditions to render the problem feasible. This significantly reduces the complexity 

associated with applying optimization scheduling to large-scale network operations. 

5 Conclusions 

This paper investigates the feasibility of a scheduling optimization model for natural 

gas distribution networks. By reviewing both domestic and international studies, we 

develop three models that identify feasible regions using a constrained set of sample 

cases and machine learning techniques. The models provide an effective way to define 

feasible boundaries within the parameter space. Additionally, we propose a method for 

diagnosing the causes of infeasibility when sample cases fall outside these boundaries, 

offering practical insights for engineering applications. These approaches not only im-

prove the accuracy of feasibility analysis but also aids in optimizing the management 

of natural gas distribution networks. 
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