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Abstract. In sequential recommender systems, two primary challenges
are the long-tailed distribution of data and data distribution bias. To
effectively address these issues, a Contrastive and Causal Learning Algo-
rithm for Sequential Recommendation (C2ASeRec) has been proposed.
The algorithm enhances the training efficacy of sequential recommen-
dation models and boosts their performance by introducing environ-
ment partition and reweighting, regularization term constraint based
on causal learning, and methods to enhance uniformity of representa-
tion. These innovations mitigate the performance degradation previously
caused by data distribution bias. By concurrently incorporating causal
learning-based regularization constraints and representation uniformity
enhancement techniques, C2ASeRec demonstrates both universality and
robustness across different environment partitioning principles, enabling
superior performance in complex real-world scenarios. Experimental re-
sults indicate that C2ASeRec achieves outstanding outcomes in address-
ing data distribution bias. In terms of key performance metrics such
as hit rate and normalized discounted cumulative gain, our algorithm
significantly surpasses seven previous methods, showcasing exceptional
advanced performance.

Keywords: Sequential Recommendation - Causal Learning - Data Dis-
tribution Bias.

1 Introduction

When the sequential recommendation system presents items to users, the display
method will also affect the probability of user interaction with the items. This
includes whether the item is exposed to the user, the way the item is exposed
to the user, the position of the item on the display page, and the comparison
with other items. These factors may confuse the user’s feedback data, making it
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more difficult to capture the user’s preferences. In addition, the sequential rec-
ommendation algorithm itself may have some inherent tendencies. For example,
algorithms based on popularity tend to recommend popular items and content.
The sequential recommendation system is a feedback loop process. It trains the
algorithm model from the feedback data, and then provides recommendations
to users through the algorithm model. After the user interacts with the system,
feedback data is generated. This continuous cycle process will also introduce var-
ious biases[1]. These biases may hinder the accurate capture of user preferences
and have a significant impact on the performance of the sequential recommen-
dation model, thereby reducing the effectiveness of the recommendation.

Therefore, a reasonable solution to the bias problem in the sequential recom-
mendation system helps to capture user preferences more accurately. However,
most current research focuses on using machine learning algorithms to fit user
behavior history data, while ignoring the various biases in the observed data
caused by factors such as user behavior habits, item display methods, and se-
quential recommendation algorithm settings. The existence of these biases limits
the ability of algorithms that learn directly from data to accurately express user
preferences, thereby reducing the performance of sequential recommendation
systems. Therefore, how to mitigate the impact of these biases on algorithm
learning and thus improve the performance of sequential recommendation sys-
tems has attracted widespread attention from academia and industry|2].

The sequential recommendation algorithm is divided into correlation-based
recommendation algorithm and causal sequential recommendation algorithm.
The sequential recommendation algorithms introduced above all belong to cor-
relation sequential recommendation algorithms, which have the advantages of
being simple and convenient. They only need to continuously fit the data to
make the algorithm model better match the data. However, it is difficult to eval-
uate and solve the problem of data distribution deviation based on correlation
sequential recommendation algorithms alone, because the correlation relation-
ship cannot infer the causal relationship between input and output, and the
deviation may originate from a certain causal relationship stage in the interac-
tion between users and systems. The causal recommendation algorithm empha-
sizes considering causal relationships rather than just correlation relationships
when processing observed data. It can learn invariant features, that is, the fun-
damental needs of each user’s personalization, thereby alleviating the impact
and interference caused by different data deviations. Therefore, causal recom-
mendation is more suitable for solving data deviation problems, helping to more
accurately locate and solve deviations to eliminate adverse effects and improve
the interpretability of sequential recommendation algorithms.

Therefore, in order to solve the problem of data bias more comprehensively,
The algorithm will further improve and expand the method in the previous al-
gorithm. We propose a more general and flexible sequential recommendation
algorithm (C2ASeRec) that introduces contrastive and causal learning. The al-
gorithm does not rely on a specific model architecture, but starts from the per-
spective of environment division and model training, and reduces the impact of
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data bias by optimizing the distribution of data and the training strategy of the
model. The algorithm is not only applicable to the long-tail distribution problem
discussed in the previous algorithm, but can also deal with other types of data
bias problems, and has better generalization and application prospects.

2 Design of sequential recommendation algorithm based
on contrastive learning and causal learning

2.1 Sequential recommendation algorithm structure based on
contrastive learning and causal learning

The structure of the C2ASeRec algorithm in The algorithm is shown in Fig. 1:
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Fig. 1. C2ASeRec algorithm structure diagram

In order to solve the problem of data distribution bias in the sequential
recommendation task, The algorithm proposes a sequential recommendation al-
gorithm that introduces contrastive learning and causal learning, which is ap-
plied to the sequential recommendation task. First, since the long-tail problem
of data cannot be ignored, the algorithm in The algorithm retains the struc-
ture of the contrastive learning module; secondly, in order for the sequential
recommendation algorithm to learn the fundamental needs of users rather than
environmental interference factors, The algorithm introduces the causal learning
method as an invariant feature extractor; finally, through the multi-task train-
ing method, contrastive learning and causal learning are introduced into the
sequential recommendation task to achieve loss synchronization optimization.
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Specifically, the algorithm structure proposed in The algorithm is divided
into three parts: sequential recommendation representation module, contrastive
learning module and causal learning module. First, the sequential recommenda-
tion representation module consists of an embedding layer and a self-attention
mechanism encoding layer to extract deep features of sequential recommenda-
tion; second, the contrastive learning module is mainly divided into three parts:
adversarial training, projection mapping layer and sequence shuffle data enhance-
ment method, which have been elaborated in detail in the previous algorithm
and will not be repeated in this algorithm; finally, the causal learning module
consists of three parts: the environment division reweighting method, the reg-
ular term constraint method based on causal learning and the representation
uniformity enhancement method. The environment division reweighting method
is used to optimize the loss function of the algorithm to prevent the algorithm
from learning false related features. The regular term constraint method based
on causal learning avoids the problem of too large differences in the effect of
the algorithm in different environments by adding a variance constraint to the
loss, and avoids the negative impact that may be caused by environment di-
vision. The uniformity of the representation is enhanced by the representation
uniformity method, so that the algorithm can make more stable and consis-
tent predictions when processing data from different distributions, and improve
the generalization ability of the algorithm. The following mainly introduces the
causal learning module and the corresponding detailed method design in detail.

2.2 Causal Learning Module

Since the contrastive learning method has been introduced in the previous algo-
rithm, the following mainly elaborates on the proposed causal invariant learning
method. This section first analyzes the data generation process caused by distri-
bution deviation due to confounding factors in the sequential recommendation
scenario from the perspective of causal graph, as shown in Fig. 2:

2.3 Causal Learning Method Process

Although previous studies on sequential recommendation algorithms have achieved
remarkable results, these algorithms still have significant performance degra-
dation when faced with data distribution bias. The algorithm proposes a new
method to further improve the learning effect of sequence data representation.
Specifically, The algorithm introduces three key technical innovations to address
these challenges.

(1) Environment partitioning and reweighting method:

It can be noted that when processing sequence data, sequential recommenda-
tion algorithms often find it difficult to capture the information of the environ-
ment. In order to alleviate the problem of data distribution bias, The algorithm
proposes an environment partitioning and reweighting method, and introduces
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Fig. 2. Causal graph of data distribution bias in sequential recommendation

an environment-based loss function for the training process of environment par-
titioning and reweighting algorithms. The role of the environment loss is to em-
phasize the importance of learning environment information by the algorithm,
thereby helping the algorithm to better capture the contextual information of
the data. The introduction of this innovation enables the method in The algo-
rithm to better adapt to different environments and data characteristics when
processing sequence data, thereby improving the performance of sequential rec-
ommendation.

(2) Regularization term constraint based on causal learning:

Inspired by causal learning theory, The algorithm introduces a regularization
term constraint based on causal learning to improve the sequence data represen-
tation learned by the algorithm model. The purpose of this constraint is to help
the sequential recommendation algorithm better understand the causal relation-
ship in the data, thereby improving its generalization ability. By incorporating
causal relationships into the training process, the algorithm in The algorithm
can better identify and utilize causal information in the data, further improving
the performance of the algorithm.

(3) Enhanced uniformity of representation:

Although the constraint of loss variance helps to alleviate the problems in-
troduced by environment partitioning to some extent, its actual effect is still
affected by the design of the environment partitioning principle. Taking unpop-
ular/hot as an example, the algorithm model tends to learn invariant features
that are not affected by popularity. However, for other data distribution bias
problems, such as class imbalance, random data loss, etc., this division may not
be optimal, and the mitigation effect of loss variance constraint is relatively
general.

This shows that different invariant features may be required for different
types of data distribution bias, and simply based on loss variance constraints
cannot completely solve this problem. This is mainly because in actual scenarios,
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the test distribution is usually unknown, and the demand for invariant features
may be different under different data distribution bias problems.

In order to further enhance the uniformity of representation, the algorithm
in The algorithm introduces a method of adding random noise to enhance the
uniformity of representation to ensure a more uniform representation on the hy-
persphere. This helps to reduce the impact of the data distribution bias problem
and improves the stability and generalization of the algorithm.

Therefore, in order to enhance the prediction effect of the algorithm when fac-
ing different data distribution deviation problems, the concept of representation
uniformity is introduced. By emphasizing the uniform learning of the algorithm
on the input, the algorithm is made more versatile and better adapted to un-
known test distributions. The choice of this strategy is intended to enable the
algorithm to more comprehensively deal with different types of data distribution
deviations and improve the performance of sequence recommendation systems
in practical applications.

U=U+e, I'=1I1+e¢; (1
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v

Fig. 3. Visualization diagram of the formula corresponding to the method for charac-
terizing uniformity

As shown in the Fig. 3, the first constraint controls the size of e, and e;,
which are numerically equivalent to points on a hypersphere with a radius of €.
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The second constraint ensures that U, e, and e; should be in the same hyper-
octave, so that the noise vector and the original representation are in the same
hyperquadrant, so that adding noise will not cause a large deviation in U, so as
to avoid excessive semantic deviation caused by adding noise. The figure shows
that by adding the scaled noise vector to the original representation, it can be
regarded as rotating the original representation vector U by two small angles 61
and 62 in space, each rotation corresponds to the deviation of U, and realizes the
enhancement of the representations e, and e;. Due to the small rotation angle,
the enhanced representation retains most of the information of the original rep-
resentation and brings semantic differences. And for each node representation,
the added random noise is different.

2.4 Multi-task training

Sequence Recommendation Loss Function The negative log likelihood
with sampled softmax is applied as the recommendation loss for each user u
at each time step t + 1 as:

exp(s/ v;,)
exp(s:v:ﬁ_l)—i— Z exp (s:vt;l)

v €V

Lrec(s:)=—log , (2)

where s, ;represents the predicted user representation, v;:l is the item that user
u interacts with, and v, is the randomly sampled negative example item at
time step ¢ + 1.

The algorithm clusters user behaviors across environments to optimize the
sequential recommendation loss function and obtain:

1 .
LE@ZU = Z chc (’Yu,i,Enva Vu,i) (3)

EnveH |DE7w|(u,i)€DEnv

where H represents the divided environment, D g, represents the data from
the environment Env, and L,... is the loss function of the sequence recommen-
dation task. In this formula, this chapter minimizes the loss function of user and
item representations to better fit the data of each environment respectively.

Contrastive Learning Loss Function To distinguish whether the two se-
quential representations come from the same user history sequence, contrastive
learning loss is trained iteratively to minimize the differences between differ-
ent views from the same user history sequence and to maximize the differences
between augmentation sequences from different users. Then the data augmen-
tation module is applied to each user’s sequence and obtain the augmented se-
quence. For each user, (3,,5,) is treated as a positive sample pair, and consider
the other 2(N — 1) data augmented examples as negative samples, after which
the dot product is utilized to represent the similarity between each sequence,

sim(u, v) = u'v.
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Finally, the contrastive learning loss function is defined similarly to softmax
cross entropy loss as:

exp (sim(?, §))

exp (sjm(’s”, )+ Z exp (Sim(s, s~ ))

s—eS—

£cl(§7 /5\) = - IOg ) (4)

where sim(.)represents the cosine similarity function, §,3 indicates the hidden
representation after data augmentation, s~ is a randomly sampled negative hid-
den representation. Finally, all 2N in-batch losses are averaged to get the final
contrastive loss.

Total Loss Function In order to combine contrastive learning and sequence
recommendation effectively, a multi-task training method is adopted, which is
jointly optimized by the sequence recommendation task and the additional con-
trastive learning task. The total loss is a linear weighted sum as follows:

ﬁtotal = LTEerzv + ’YLch (5)

where v is a weighting hyper-parameter.

3 Experimental design and results analysis

3.1 Introduction to datasets and baseline algorithms

The algorithm conducts experiments on Amazon Beauty, Diginetica, MovieLens-

1m, and Yelp public representative datasets, which have significant differences

in domain and sparsity. In order to verify the advancement and effectiveness of
the algorithm proposed in this algorithm, we conduct a detailed comparison and
analysis with a series of representative baseline algorithms.

e SASRec [3]. This method stands as one of the leading baselines for addressing
sequential recommendation tasks. It leverages self-attention modules to model
user sequences and capture their dynamic interests.

e BERT4Rec [4]. This approach uses a mask term training method similar
to the Bert[5] models in NLP. The backbone is a bidirectional self-attention
mechanism

e CL4SRec [6]. This technique applies item cropping, masking, and reordering
as augmentations for contrastive learning. It is notable for being the first to
introduce contrastive learning to sequential recommendation.

e DuoRec [7]. This method leverages contrastive learning to tackle the repre-
sentation degeneration issue in . It integrates contrastive regularization with
dropout-based augmentation and supervised positive sampling to create con-
trastive samples.

e CT4Rec [8]. This approach proposes a consistency training method for se-
quential recommendation tasks, featuring two bidirectional losses. It introduces
regularization in the output space by minimizing the bidirectional loss between
two different outputs.
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e ICSRec [9]. This method uniquely extracts coarse-grained intent supervision
signals from the historical interaction sequences of all users. These signals are
then used to construct two auxiliary learning objectives aimed at enhancing
intent representation learning.

3.2 Evaluation Metrics

In this paper, the "leave one out" strategy is used to evaluate the performance
of each algorithm. For each user, the last item interacted with is retained as the
test data, and the items before the last item are used as the validation data.
The remaining items are used for training. Hit Ratio (HR) and Normalized Dis-
counted Cumulative Gain (NDCG) are common metrics used to evaluate the
performance of algorithms proposed in related research. Hit Ratio HR@Qk can be
used to represent the prediction accuracy of items, while Normalized Discounted
Cumulative Gain NDCG@k further considers the information of ranking posi-
tion. The detailed definitions of HR@k and NDCG@k have been explained in
detail in the previous algorithm and will not be repeated here.

In this work, k=5, 10 are used to calculate HR@k and NDCG®@k. For these
metrics, higher values indicate better algorithm performance.

3.3 Experimental settings

This paper uses the Adam optimizer to train the algorithm model, with a learning
rate of 0.001. During the training process, the batch size is set to 2048 and the
number of training epochs is set to 1500.

3.4 Experimental results and analysis

In Table 1, the performance of C2ASeRec is compared on four data sets with
seven algorithms. The best and second best scores for the metric in each data
set are shown in bold and underlined, respectively. The last column shows the
percentage improvement of the metric relative to the best baseline algorithm.
The table shows that C2ASeRec achieves the best performance on all datasets
and performs better than the CFSeRec[10] and the previous state-of-the-art al-
gorithm ICSRec[9]. Although BERT4Rec[4]applies a bidirectional self-attention
architecture in sequential recommendation tasks, the performance improvement
of BERT4Rec|[4] relative to SASRec[3] is not significant and stable. This finding
shows that simply optimizing the entire algorithm by the final recommendation
goal cannot fully utilize temporal information. For sequential recommendation
algorithms using contrastive learning, C2ASeRec generally performs better than
previous algorithms. Both C2ASeRec adopts a multi-task learning strategy to
utilize contrastive learning self-supervised signals, and the experimental results
on the four data sets are always better than the previous algorithms, proving
the effectiveness of contrastive learning in improving the performance of sequen-
tial recommendation systems. sex. At the same time, C2ASeRec not only adds
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Table 1. Performance comparison of C2ASeRec and baseline algorithms

Dataset |Metrics SASRec BERT4Rec CL4SRec DuoRec CT4Rec ICSRec|CFSeRec|C2ASeRec|Improv.
Beauty |HRQ5 0.2109 0.2007 0.2393  0.2436 0.2556 0.2591 | 0.2757 | 0.2846 [3.23%
HRQ10 0.2759 0.2727 0.2912  0.3021 0.3200 0.3286 | 0.3613 | 0.3771 |4.37%
NDCG@5 [0.1523 0.1486 0.1687  0.1733 0.1924 0.1987 | 0.2015 | 0.2203 |9.33%
NDCG@10(0.1733 0.1681 0.1854  0.1901 0.2132 0.2212 | 0.2448 | 0.2633 |7.56%
Diginetica| HR@Q5 0.1398 0.1573 0.1762  0.2180 0.2572 0.2631 | 0.2944 | 0.3061 [3.97%
HR@10 0.2731 0.2936 0.3216  0.3365 0.3774 0.3882 | 0.4201 | 0.4413 |5.04%
NDCG@5 [0.1285 0.1327 0.1450  0.1518 0.1729 0.1796 | 0.1994 | 0.2101 |5.37%
NDCG@10(0.1416 0.1609 0.1653  0.1735 0.1984 0.2015 | 0.2376 | 0.2519 [6.02%
ML-1M |HR@5 0.1087 0.1003 0.1147  0.2038 0.2045 0.2081 | 0.2141 | 0.2346 [9.57%
HR@10 0.1593 0.1504 0.1975  0.2946 0.2981 0.3019 | 0.3187 | 0.3371 |5.77%
NDCG@5 [0.0638 0.0616 0.0662  0.1390 0.1402 0.1428 | 0.1455 | 0.1603 |10.17%
NDCG@10(0.0724 0.0701 0.0928  0.1680 0.1699 0.1706 | 0.1781 | 0.1933 |8.53%
Yelp HR@5 0.0156 0.0161 0.0186  0.0173 0.0216 0.0221 | 0.0241 | 0.0266 |10.37%
HR@10 0.0252 0.0265 0.0291  0.0282 0.0352 0.0379 | 0.0431 | 0.0491 [13.92%
NDCG@5 [0.0096 0.0102 0.0118  0.0114 0.0130 0.0196 | 0.0225 | 0.0286 |27.11%
NDCG@10(0.0129 0.0134 0.0171  0.0163 0.0185 0.0219 | 0.0286 | 0.0351 |22.73%

contrastive learning methods but also causal learning methods, and the experi-
mental results on the four data sets are better than CFSeRec[10]that only adds
contrastive learning, reflecting the effectiveness of causal learning methods in
improving the performance of sequential recommendation systems. sex. By com-
paring C2ASeRec with the baseline algorithms introduced in this article, The
algorithm finds that C2ASeRec has the best performance on these data sets.

3.5 Ablation experiment

Table 2. Ablation experiment results of C2ASeRec (NDCG@10)

Architecture Beauty Diginetica ML-1M Yelp

(0) Default 0.2633 0.2519 0.1933 0.0299
(1) Remove Reg 0.2617 0.2503 0.1912 0.0342
(2) Remove Env 0.2604 0.2483 0.1886 0.0331
(3) Remove Uniformity 0.2586 0.2449 0.1850 0.0312
(4) Remove Reg and Env 0.2571 0.2436 0.1839 0.0304
(5) Remove Reg and Uniformity 0.2536 0.2421 0.1821 0.0296
(6) Remove Env and Uniformity 0.2481 0.2398 0.1802 0.0289

In the causal learning module, the representation uniformity enhancement
method, the environment-based reweighting method, and the regularization term
constraint method based on causal learning are used. In order to verify the effec-
tiveness of each method proposed in this algorithm, ablation experiments were
conducted on four datasets, and the results are shown in Table 2 (0) The default
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is the complete C2ASeRec algorithm proposed in this paper. (1)(2)(3) respec-
tively represent the experimental results after using two of the causal learning
methods, and (4)(5)(6) respectively represent the results after using only one
causal learning method. It can be seen from the results in the table that when
these components are removed, the performance deteriorates. For the effective-
ness ranking of the three causal learning methods in improving the final indi-
cators in the experiment, enhanced uniformity of representation > environment
partitioning and reweighting method > regularization term constraint based on
causal learning. And the indicators using all three causal learning methods are
better than using only one or two methods. The effectiveness of each method
proposed in The algorithm is proved by this ablation experiment.

3.6 Experiment on the influence and sensitivity of the temperature
hyperparameter of the loss function on the algorithm index

035 e=——Recall @10 ==——=NDCG@10
03
0.25

Recall@10 0.2
(NDCG@10)

0.15

0.1

0.05

0

A

Fig. 4. Graph of algorithm index changing with local hyperparameter

This chapter also conducts experiments on the influence and sensitivity of
hyperparameters on algorithm indicators. As shown in Fig. 4 and Fig. 5, it
is observed that with the increase of hyperparameter A, the performance of the
algorithm shows a trend of gradually increasing at the beginning and then gradu-
ally reaching a peak. Subsequently, the performance begins to decline, indicating
that by adjusting A, more detailed performance tuning can be achieved. The al-
gorithm shows the best performance when the size of A is between 0 and 1, and
the algorithm is relatively insensitive to changes in hyperparameters within an
appropriate range.

This trend may be explained by the fact that fine-tuning of hyperparameters
can balance the complexity of the algorithm to a certain extent. At the beginning,
increasing A may help introduce some constraints and improve the generalization
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Fig. 5. Graph of algorithm indicators changing with global hyperparameters

ability of the algorithm, thereby improving performance. However, when A is
too large, it may cause the algorithm to be over-constrained and lose some of
its ability to fit the training data, resulting in performance degradation. In the
appropriate range of A, the algorithm can find a balance that takes into account
the fitting of the training data and avoids overfitting to a certain extent.

It is worth noting that the algorithm performs best when the size of the
hyperparameter A is between 0 and 1. This may be because within this range,
the algorithm can better adapt to the characteristics of the training data while
maintaining the ability to generalize to unseen data. The choice of hyperparam-
eters plays a key role in the performance of the algorithm, and the algorithm’s
insensitivity to A within a certain range shows that the choice within this range
is relatively robust.

Overall, this trend in hyperparameter adjustment reveals that fine-tuning
the performance of the algorithm needs to take into account the balance be-
tween complexity and generalization, and choosing an appropriate hyperparam-
eter range is a key step in improving the performance of the algorithm. Such an
adjustment process provides the algorithm with better adaptability, enabling it
to perform better in different tasks and data distributions.

3.7 Representation uniformity experiment

This experiment deeply explores the reasons why the algorithm proposed in this
chapter is superior to the previous algorithms. It can be seen in Figure6 that the
visualization result of the representation after uniform enhancement and PCA
dimensionality reduction on the right is more uniform and smoother than the
visualization result of the representation without uniform enhancement on the
left. By uniformly enhancing the representation learned by the algorithm model,
the robustness of the algorithm is actually improved. When the representation
becomes uniform, the algorithm is more able to capture the key core features
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Fig. 6. Representation distribution visualization diagram

in the data instead of over-relying on specific data points that may be noisy
or abnormal. This uniform representation makes the algorithm more general
and more adaptable to different data distributions and input changes. When
faced with unseen data or slightly different inputs, the algorithm is less likely
to overreact to individual exceptions. Therefore, by enhancing the uniformity of
representation, the robustness of the algorithm is effectively improved, making
it more adaptable to complex and changeable situations in the real world.

4 Conclusion

This paper proposes a new sequential recommendation algorithm that introduces
contrastive learning and causal invariant learning, named C2ASeRec, which aims
to effectively solve the data distribution deviation problem of sequential rec-
ommendation systems existing in previous research. The algorithm successfully
improves the effect of sequential recommendation algorithm model training and
improves the performance of the sequential recommendation algorithm by intro-
ducing environment partitioning and reweighting method, regularization term
constraint based on causal learning, and enhanced uniformity of representation.
These innovations help solve the performance degradation problem caused by
data distribution deviation in previous work. By simultaneously introducing reg-
ular term constraints and representation uniformity enhancement methods based
on causal learning, the versatility and robustness of the algorithm can be taken
into account under different environment division principles, thereby perform-
ing better in complex scenes in the real world. Experimental results show that
C2ASeRec achieves remarkable results in resolving data distribution deviations.
In terms of two key performance indicators, such as hit rate and normalized
loss cumulative gain, the algorithm in The algorithm is significantly better than
a series of the latest and classic sequential recommendation algorithm baseline
algorithms, showing better performance.
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