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Abstract. Multi-objective dynamic flexible job shop scheduling (MO-
DFJSS) presents an intricate task of creating optimal job schedules in
a manufacturing environment characterised by uncertainty and flexibil-
ity, while simultaneously balancing multiple, often conflicting objectives.
Current approaches integrate genetic programming (GP) with Pareto
dominance-based and scalarising function-based multi-objective meth-
ods to learn Pareto fronts of scheduling heuristics for MO-DFJSS. How-
ever, these approaches often rely on approximate performance indicators,
which can complicate achieving the final goal. In contrast, indicator-
based multi-objective methods offer a more straightforward way by using
performance indicators as the assessment criterion. Despite their effec-
tiveness in other domains, no indicator-based multi-objective methods
have been combined with GP for MO-DFJSS to date. Addressing this
gap, this paper proposes SMS-MOGP, a fusion of GP with the SMS-
EMOA, which is a popular indicator-based multi-objective algorithm, to
learn scheduling heuristics for MO-DFJSS. Experiment results demon-
strate that SMS-MOGP achieves comparable performance to NSGPII
and significantly outperforms MOGP/D in solving the MO-DFJSS prob-
lems.

Keywords: Heuristic learning - Genetic programming - Dynamic schedul-
ing - Multi-objective.

1 Introduction

Multi-objective dynamic flexible job shop scheduling (MO-DFJSS) is a challeng-
ing problem, that involves allocating multiple jobs to various machines, consider-
ing factors like new jobs arriving unexpectedly and the need to balance multiple,
often conflicting, goals [13]. The dynamic nature requires real-time adjustments
to unexpected changes. Scheduling heuristics offer a way to quickly react and
make decisions based on the latest information, making them suitable for real-
world dynamic environments [12|. However, designing these heuristics manu-
ally is difficult, time-consuming, and requires extensive expertise in the specific
manufacturing domain [5]. Furthermore, achieving a balance between multiple
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objectives and identifying a set of top-tier scheduling heuristics (Pareto front)
necessitates specialized algorithms and methods that are not readily adaptable
to manual design approaches.

Genetic programming (GP) techniques are extensively used to automatically
develop scheduling heuristics for addressing DFJSS problems [14]. GP has also
been integrated with traditional multi-objective methods to tackle MO-DFJSS
challenges. Classical multi-objective methods can be broadly categorised into
three types based on their offspring selection criteria |8]: 1) Pareto dominance-
based methods (e.g., strength Pareto evolutionary algorithm 2 (SPEA2) [22])
and non-dominated sorting genetic algorithm II (NSGA-II) [2]; 2) scalarising
function-based methods (e.g., multi-objective evolutionary algorithm based on
decomposition (MOEA /D) [21]); and 3) indicator-based methods (e.g., Hyper-
volume measure-based evolutionary multi-objective algorithm (SMS-EMOA) [1]).
Pareto dominance-based methods employ Pareto dominance criteria along with
crowding distance (NSGA-II) or clustering techniques (SPEA2) for individual
comparison [8]. Scalarising function-based methods use predefined weight vec-
tors to assess fitness and select solutions in various sub-problems (MOEA /D) [§].
In essence, the selection strategies in these multi-objective methods can be con-
sidered as an approximate performance indicator of the quality of the solu-
tion [§]. Different from these two types, indicator-based methods directly use
performance indicators as the assessment criterion [3]. In this case, indicator-
based methods are generally more straightforward than those based on Pareto
dominance-based or scalarising function-based multi-objective methods. Numer-
ous research studies have reported the superiority of indicator-based multi-
objective methods compared to the other two types. Additionally, NSGAII,
SPEA2, and MOEA /D have been integrated with GP, resulting in NSGPII [19],
SPGP2 [19], and MOGP/D [12], respectively, for solving MO-DFJSS. However,
to the best of our knowledge, no indicator-based methods have been investigated
with GP for MO-DFJSS. To fill this gap, this paper examines the performance
of indicator-based methods in the domain of MO-DFJSS. In indicator-based
evolutionary multi-objective algorithms, the HV has been frequently used as an
indicator. The use of the HV has clear theoretical support: the HV is a Pareto-
compliant performance indicator [6]. In this case, we combine the most popular
HV indicator-based method (SMS-EMOA) with GP to solve the MO-DFJSS
problems, which is called SMS-MOGP. SMS-MOGP incorporates a selection op-
erator that combines the HV measure with the concept of non-dominated sorting.
To be specific, the objectives of this paper are as follows:

— To examine indicator-based methods for MO-DFJSS, this paper proposes
combining the popular indicator-based algorithm (SMS-EMOA) with GP,
resulting in SMS-MOGP for solving MO-DFJSS problems.

— To reduce the influence of duplicated performance (same phenotypes) by
different genotypes in GP, a new comparative criterion is proposed.

— To verify the effectiveness of the proposed method, SMS-MOGP is compared
with a Pareto dominance-based method (NSGPII) and a scalarising function-
based method (MOGP /D) for MO-DFJSS.
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— Further analysis is conducted to examine how the proposed method influ-
ences the terminal usage frequency in the learned scheduling heuristics for
different MO-DFJSS scenarios.

The remaining sections of this paper are organized as follows: Section [2] pro-
vides background information, including a review of MO-DFJSS and a discussion
of relevant research. The proposed methodology is outlined in detail in Section
Section [4] describes the experimental setup, including the dataset and param-
eter settings. Section [5| presents the results and experimental findings. Finally,
Section [ summarizes the key conclusions of this paper.

2 Background

2.1 Problem Modelling of MO-DFJSS

MO-DFJSS aims to optimise the scheduling of a set of jobs J = {Jy, Jo, ..., Jn}
on a collection of machines M = {M;, My, ..., M,,}. Every job J; is charac-
terised by:

— Sequence of operations [0;1,0;,...,0;,,]: The ordered list of opera-
tions that must be performed sequentially.

— Arrival time r;: The time at which the job arrives in the system.

— Due date d;: The deadline by which the job should be completed.

— Weight w;: The priority or importance of the job.

Each operation O; ; has:

— Eligible machines M, ; € M: The subset of machines capable of perform-
ing the operation.

— Workload 7; ;: The amount of work required for the operation.

— Processing time ?; ; ;.: The time to process operation O; ; on machine Mj,

given by t; ;r = 7;; , where 7, denotes the processing rate of machine M.

Additionally, machines are located at different geographic sites, necessitating a
transportation time 7y, %, to transfer a job between machines My, and My, .

The goal of MO-DFJSS is to optimise multiple conflicting objectives. Com-
mon objectives in MO-DFJSS include:

— Max flowtime: F oy = max? {C; —r;}

Max tardiness: Ty, = max?{T;}

— Max weighted flowtime: W F,,,, = max? ; {w;(C; —r;)}
— Max weighted tardiness: W1, = max} {w;T;}
Mean flowtime: Fiean = = >0 (C; — 1)

— Mean weighted tardiness: WTiean = = > i (w;T})

Where:
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— (; denotes the processing completion time of job J;.
— T, = max{C; — d;,0} represents the tardiness of job J;.

MO-DFJSS takes into account the following constraints:

— Precedence constraint: An operation cannot begin until its predecessor
operation is completed and the job has been moved to the designated ma-
chine.

— Operation assignment constraint: Each operation must be performed
on one of its eligible machines.

— Machine capacity constraint: Each machine can only process one oper-
ation at a time.

— Non-preemptive scheduling constraint: Operations cannot be inter-
rupted once they start.

In this paper, MO-DFJSS is formulated to find a schedule that optimally
balances these objectives while adhering to all constraints. For the purpose of
analysis, this paper concentrates on bi-objective scenarios by selecting two of
the six objectives mentioned above for each scenario. Further details regarding
the selection process of these objectives are provided in Section [

2.2 Related Work

GP for MO-DFJSS: Genetic programming (GP), as a hyper-heuristic method,
can automatically learn high-quality heuristics and has been successful in various
problems such as bin packing [9], vehicle routing [4], and cloud computing [15].
GP has been widely utilised for developing scheduling heuristics for DFJSS,
containing routing and sequencing rules [16]. In contrast to conventional opti-
misation methods, GP operates within a machine learning paradigm, involving
both training and test phases. During the training phase, GP learns a popula-
tion of scheduling heuristics with fitness evaluations based on a set of training
DFJSS instances. For the test phase, the learned heuristics are assessed using a
separate set of unseen test instances to determine their performance.

In |19], the integration of GP with two prominent Pareto dominance-based
multi-objective methods, SPEA2 [22] and NSGA-II |2], led to the development
of SPGP2 and NSGPII for learning scheduling heuristics for addressing MO-
DFJSS problems. The experimental findings indicate that NSGPII surpasses
SPGP2 in both training and test metrics, such as hypervolume (HV) and inverted
generational distance (IGD) [7]. Beyond dominance-based approaches, [12] in-
troduces MOGP/D, a novel multi-objective GP method that merges the advan-
tages of MOEA /D [21] with GP. This method effectively learns a well-distributed
Pareto front of scheduling heuristics for MO-DFJSS. Subsequent research in [17]
enhances the NSGPII approach to handle MO-DFJSS by integrating surro-
gate techniques with brood recombination, producing more effective scheduling
heuristics than the conventional NSGPII within the same training timeframe.
Additionally, [13] proposes improved NSGPII methods that consider semantic
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diversity and similarity to evolve effective scheduling heuristics for MO-DFJSS.
Furthermore, [20] examines the impact of terminal settings on the performance
of NSGPII for MO-DFJSS, while other studies delve into interpretability [11]
and multitasking [18] within the MO-DFJSS context.

Overall, MO-DFJSS has garnered significant attention, with dominance-based
and scalarising function-based methods incorporated into GP proving effective
for addressing this complex problem. However, to the best of our knowledge,
there has been no exploration of integrating indicator-based methods with GP
for solving MO-DFJSS. Indicator-based multi-objective algorithms are widely
popular in the multi-objective domain. Investigating the feasibility of integrat-
ing indicator-based algorithms with GP to tackle MO-DFJSS could offer valu-
able insights into whether these methods can outperform dominance-based and
scalarising function-based approaches in this domain.

Indicator-based MO Indicator-based multi-objective methods represent a
class of optimisation techniques that differ significantly from traditional Pareto
dominance-based and scalar function-based approaches. These methods leverage
performance indicators as direct criteria for evaluating and guiding the search
in multi-objective optimisation problems [3]|. In this case, it can provide clear
guidance for algorithmic decisions, such as selection and evolutionary operations,
based on quantitative indicators of solution quality. The SMS-EMOA is a leading
example of indicator-based multi-objective evolutionary algorithms [3]. It estab-
lishes a complete ranking of solutions by assessing their contributions to the
HYV indicator. This paper aims to integrate SMS-EMOA with GP for addressing
MO-DFJSS. Algorithm [I] provides the general framework of SMS-EMOA. The
algorithm starts by initialising a population P of scheduling heuristics with a
specified size N (line . In each iteration, a new offspring off,,.,, is generated
(line [3]). This typically involves applying variation operators such as mutation
or crossover to selected parents from P. The offspring off,,.,, is added to the
current population A to form a combined set B (line[4]). The combined set B un-
dergoes non-dominated sorting, which partitions B into several non-dominated
fronts [Fi, ..., Fx] (line [5). The algorithm identifies the worst-performing indi-
vidual quorst in the last front Fy based on the HV indicator (line @ Then the
Guorst 18 deleted from B (line @ The algorithm terminates when the stopping
condition is satisfied.

3 Indicator-based Multi-objective Genetic Programming

3.1 General Framework

SMS-MOGP integrates the popular SMS-EMOA algorithm with GP to learn
scheduling heuristics to handle MO-DFJSS problems. Fig. [T]illustrates the overall
framework of SMS-MOGP for MO-DFJSS. SMS-MOGP employs classical repro-
duction, crossover, and mutation to generate offspring for the next generation. In
contrast to the original SMS-EMOA, SMS-MOGP explores the heuristic space
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Algorithm 1: SMS-EMOA.
Input: Population size: N.
Output: Pareto front: R.
Initialise a random population A of scheduling heuristics with size N;
while the stopping condition is not satisfied do
Generate a new offspring off,,
B+ AU off,c;
[F1, ..., F] < non-dominated sorting(B);
Guorst < argminger, HV (Fy);
A+ B \ Quorst)
end
R « Pareto front(A);
return R;

ew?
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instead of the solution space, resulting in a Pareto front of scheduling heuris-
tics upon completion of the training process. The performance of these learned
scheduling heuristics is then examined on the test set. Additionally, SMS-MOGP
does not perform environmental selection; all generated offspring are inherited
into the next generation. Compared to NSGPII, SMS-MOGP utilises a different
parent selection strategy.

3.2 Parent Selection Strategy

SMS-MOGP introduces a new parent selection strategy based on three metrics:
HYV contribution, the number of individuals it is dominated by, and the number
of duplicated phenotypes as the individual in the population. Calculating these
three metrics is essential.

HV contribution: After fitness evaluation and non-dominated ranking, the
Pareto front is obtained. For individuals in the Pareto front, their HV contri-
bution is calculated. In the case of two objectives, the individuals in the Pareto
front are sorted in ascending order based on the values of the first objective func-
tion f1. The sequence is subsequently sorted in descending order based on the
f2 values, as the points are mutually non-dominated. For a sorted Pareto front
f = {s1,..., 85|}, the HV contribution A of the boundary points (s; and s)x)) is
assigned a significantly high value to promote their selection. The HV contribu-
tion A of the other individuals is calculated as in Eq. (), where i = 2, ..., |R| —1.

A(si, R) = |f1(i + 1) — fr(@)] x | f2(i = 1) — fa(i)] (1)

The number of dominated by: For individuals not located in the Pareto
front, the HV contribution is not required. Instead, the number of individuals
by which they are dominated is calculated. This metric facilitates a distinct
ranking of dominated solutions, focusing on regions of the solution space that
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Fig. 1. The flowchart illustrating the SMS-MOGP method for developing scheduling
heuristics for MO-DFJSS.

are sparsely populated. Fig. [2] illustrates the process of calculating the number
of individuals dominating a given individual, which is the same method used in
the original SMS-EMOA [1]. It can be observed that point a; is dominated by
4 points, while point as is dominated by 2 points. In this scenario, if points ay
and as are compared, as will be selected as the better one since it is dominated
by fewer points.

The number of duplicated phenotype: Sometimes, two different individuals
might have the same number of individuals dominating them. In such cases, the
number of duplications is used as a comparable metric. The number of dupli-
cations is calculated based on how many individuals share the same phenotype,
considering that different genotypes can produce identical phenotypes, a com-
mon occurrence in GP.

Selection rule: After obtaining the three values for all individuals in the pop-
ulation, the following rules are applied when selecting a parent:

1. If both individuals are on the Pareto front, prefer the one with a higher HV
contribution;

2. If both individuals are not on the Pareto front, prefer the one with a smaller
number of being dominated by other individuals;

3. If both individuals are not on the Pareto front and have the same number
of being dominated, prefer the one with a smaller duplication number.
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Fig. 2. An visualisation example of calculating the number of dominated by others for
given individuals.

Table 1. The six scenarios.

Scenario Objective 1 Objective 2 Utilisation
<Fmax-WTmax, 0.85> Fmax WTmax 0.85
<Fmax-WTmax, 0.95> Fmax WTmax 0.95
<WFmax-Tmax, 0.85> WFmax Tmax 0.85
<WFmax-Tmax, 0.95> WPFmax Tmax 0.95

<Fmean-WTmean, 0.85> Fmean WTmean 0.85
<Fmean-WTmean, 0.95> Fmean WTmean 0.95

4 Experiment Setup

4.1 Dataset

The DFJSS simulation model 13| is employed in this paper for experimentation.
Each simulation assumes 6000 jobs (with the first 1000 as warm-up jobs) that
must be processed using 10 heterogeneous machines with varied processing rates
randomly generated between 10 and 15. Distances between machines and the
entry/exit point are uniformly distributed between 35 and 500. Transportation
speed is fixed at 5 units. Jobs arrive according to a Poisson process over time,
each comprising a random number of operations (uniformly distributed between
2 and 10). Jobs are weighted to reflect their importance: 20% have a weight of
1, 60% a weight of 2, and 20% a weight of 4. Workloads for each operation are
uniformly distributed between 100 and 1000. The due date for each job is set
by adding 1.5 times its processing time to its arrival time. Different scenarios
are simulated by adjusting the utilisation level, where higher levels reflect more
congested job shops.

This study explores six distinct scenarios, each involving different pairs of
objectives and utilisation levels (such as 0.85 and 0.95), as detailed in Table
For every scenario, 50 instances are allocated for training, with another 50
unseen instances set aside for test [13].
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Table 2. The terminals used by SMS-MOGP for constructing scheduling heuristics for
MO-DFJSS.

Notation Description
WIQ |Work (total processing time) in the machine’s waiting queue
NIQ |Number of operations in the machine’s waiting queue
MWT |Machine waiting time = current time - machine ready time
OWT |Operation waiting time = current time - operation ready time
PT Processing time of the operation
NPT |Median processing time for the next operation
rDD  |Relative due date = due date - current time
SLACK |[Slack time
WKR |Remaining work
NOR |Job remaining number of operations
TIS Time stay in the system = current time - release time
\WY% Job weight
TRANT |Transportation time

4.2 Parameter Configurations

Table [2] provides the terminals used in SMS-MOGP for constructing schedul-
ing heuristics for MO-DFJSS. The terminals include machine-related features
such as WIQ, NIQ, and MWT; operation-related features like OWT, PT, and
NPT; job-related features including rDD, SLACK, WKR, NOR, TIS, and W;
and transportation-related features such as TRANT. The functions used in-
clude [+, —, X, /, min, max], where arithmetic operators require two arguments,
and the division operator (/) is safeguarded to return 1 when the divisor is 0.
Additionally, the functions “min” and “max” accept two arguments, returning
the minimum and maximum values, respectively.

With respect to parameter settings for the SMS-MOGP, a population size
of 1000 is employed. The Pareto front for scheduling heuristics is obtained after
50 generations. Population initialisation is carried out using the Ramped-half-
and-half method. The rates for crossover, mutation, and reproduction are set at
0.80, 0.15, and 0.05, respectively. Tournament selection with a tournament size
of 7 is used for parent selection.

5 Results

To assess and compare the algorithms’ performance, we conducted 30 indepen-
dent runs for each one. We used the Wilcoxon rank-sum test to perform pairwise
comparisons among SMS-MOGP, NSGPII, as well as MOGP /D, applying a sig-
nificance threshold of 0.05. For the analysis, we use symbols “=", “1”, and “]” to
represent statistical significance, indicating whether the results are comparable
to, better than, or worse than those of the other algorithms. For performance
evaluation, we employed two well-established metrics: HV [23] and IGD [10]. A
higher HV score or a lower IGD score indicates superior performance.
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Table 3. The average (standard deviation) of the HV metric for 30 independent runs
of NSGPII, MOGP/D, and SMS-MOGP across six scenarios.

Scenarios NSGPII MOGP/D SMS-MOGP
~Fmax-WTmax, 0.85> |0.85(0.04)(=) 0.81(0.06)(7) _ 0.84(0.04)
~Fmax-WTmax, 0.95> |0.81(0.04)(=) 0.77(0.06)(1)  0.82(0.03)
<WFmax-Tmax, 0.85> |0.78(0.08)(=) 0.80(0.07)(=)  0.78(0.09)
~WFmax-Tmax, 0.95> [0.85(0.03)(=) 0.85(0.06)(=)  0.85(0.05)
<Fmean-WTmean, 0.85>[0.52(0.25)(=) 0.52(0.25)(=)  0.48(0.24)
<Fmean-WTmean, 0.95>(0.63(0.19)(=) 0.64(0.20)(=) 0.60(0.23)
=1L 0J6[0 210 -

Table 4. The average (standard deviation) of the IGD metric for 30 independent runs
of NSGPII, MOGP/D, and SMS-MOGP across six scenarios.

Scenarios NSGPII MOGP/D SMS-MOGP
~Fmax-WTmax, 0.85> |0.10(0.02)(=) 0.12(0.03)(=) _ 0.11(0.02)
<Fmax-WTmax, 0.95> [0.11(0.02)(=) 0.14(0.04)(1)  0.11(0.02)
<WFmax-Tmax, 0.85> [0.11(0.04)(=) 0.11(0.05)(=)  0.10(0.04)
< WFmax-Tmax, 0.95> |0.08(0.02)(=) 0.09(0.05)(=)  0.08(0.02)

<Fmean-WTmean, 0.85>{0.38(0.29)(=) 0.39(0.30)(=)  0.42(0.28)
<Fmean-WTmean, 0.95>{0.25(0.18)(=) 0.25(0.18)(=)  0.29(0.23)
=1 0[610 15[0 -

5.1 Test Performance

The average and standard deviation results of HV and IGD from 30 independent
runs of different algorithms on test instances across the six scenarios are pre-
sented in Tables[3]and [d] The bottom sections of these tables provide a summary
of the Wilcoxon test comparisons.

Based on the analysis of Tables [3] and [, SMS-MOGP exhibits statistically
similar HV and IGD test performance compared to NSGPII across all six scenar-
ios. When compared to MOGP /D, SMS-MOGP demonstrates significantly bet-
ter HV performance in two scenarios focusing on max flowtime and max weighted
tardiness objectives. In the remaining four scenarios, SMS-MOGP shows statis-
tically similar HV performance. Regarding IGD, SMS-MOGP achieves signif-
icantly better performance in one scenario involving max flowtime and max
weighted tardiness objectives with a utilisation level of 0.95. In the other five
scenarios, SMS-MOGP demonstrates statistically similar IGD performance com-
pared to MOGP/D. This comparison suggests that SMS-MOGP generally per-
forms competitively with NSGPII across all evaluated metrics and scenarios. It
shows particular strengths in HV and IGD metrics under specific objective and
utilisation conditions compared to MOGP/D.

We further visualise the Pareto fronts by selecting the run with median HV
performance among all 30 runs of NSGPII, MOGP/D, and the proposed SMS-
MOGP across six scenarios, as depicted in Fig. It is observed that more
non-dominated solutions are found in scenarios focusing on max-objectives com-
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Fig. 3. The visualisation Pareto front of the run with median HV performance of
NSGPII, MOGP/D, and the proposed SMS-MOGP across 6 scenarios.

pared to those focusing on mean-objectives for all three algorithms. This obser-
vation suggests that optimising MO-DFJSS with mean-objectives might present
greater difficulty. However, determining which algorithm achieves the best spread
or dense distribution is challenging due to varying phenomena across different
scenarios. For instance, in the scenario <Fmax-WTmax, 0.85>, SMS-MOGP’s
Pareto front exhibits a more spread out distribution and better extreme points.
Conversely, in the scenario <Fmax-WTmax, 0.95>, MOGP/D’s Pareto front
displays a broader spread and superior extreme points.

5.2 Terminal Analysis

This section analyses the usage frequency of terminals to illustrate how different
terminals contribute to effective scheduling heuristics on the Pareto front by
SMS-MOGP. Figs. [] and [5] show the frequency of each terminal’s use in the
sequencing and routing rules derived from the learned scheduling heuristics in
the Pareto front across 30 runs of SMS-MOGP over six scenarios. From these
results, we can draw the following observations:

1. Terminals have varying levels of importance in sequencing rules versus rout-
ing rules. For example, the terminal W K R is quite significant in sequencing
rules but less so in routing rules. Additionally, the frequency of terminal
usage in scenarios considering mean-objectives is lower than in those consid-
ering max-objectives, both in sequencing and routing rules.
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Fig. 4. The curves of average used frequency of terminals in sequencing rules of learned
scheduling heuristics in Pareto front of the proposed SMS-MOGP across six scenarios

2. The importance of terminals varies with different objectives within the same
rule type. For sequencing rules with max-objectives, the terminals W and
W K R are the top two most frequently used. In contrast, for sequencing rules
with mean-objectives, W and PT are the most frequently used terminals.

3. Across all six scenarios, the top three most frequently used terminals in
routing rules are PT, TRANT, and W1Q. However, in scenarios considering
max-objectives, TRANT is the most critical terminal, whereas, in scenarios
considering mean-objectives, WI@Q holds the most importance.

In summary, the terminal PT plays a significant role in both sequencing and
routing rules. Terminals SLACK, W, and W KR are vital for sequencing rules
but are not frequently used in routing rules. Conversely, PT, TRANT, and WI1Q
are key criteria for routing rules.

6 Conclusions

To assess the effectiveness of indicator-based multi-objective techniques in GP
for solving MO-DFJSS problems, this study introduces SMS-MOGP, integrat-
ing the SMS-EMOA algorithm with GP. SMS-MOGP employs a novel parent
selection strategy based on HV contribution, domination count, and duplication
number for individual comparison. Experiment results demonstrate that SMS-
MOGP achieves comparable HV and IGD performance to NSGPII and signif-
icantly outperforms MOGP/D. Further analysis on terminal usage frequency
reveals varying levels of importance of different terminals across different sce-
narios. Specifically, terminal importance differs significantly between scenarios
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Fig. 5. The curves of average used frequency of terminals in routing rules of learned
scheduling heuristics in Pareto front of the proposed SMS-MOGP across six scenarios

considering max objectives and mean objectives, providing valuable guidance for
selecting suitable scheduling heuristics based on real-world optimisation objec-
tives.

As an initial exploration, while SMS-MOGP does not surpass NSGPII, its
use of indicator metrics for selection presents a straightforward approach. Future
research could enhance effectiveness by exploring multi-indicator-based parent
selection strategies. Moreover, initialising high-quality scheduling heuristics by
controlling terminal usage frequency for scenarios with different objectives could
expedite the evolutionary process and potentially improve the performance of
the final learned scheduling heuristics.
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