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Abstract. Rate of penetration prediction is essential for improving
drilling efficiency due to its crucial contribution in the optimization
of operational parameters. Accurate rate of penetration prediction en-
ables better decision-making and reduces drilling costs, which helps ob-
tain optimal operational parameters. This article proposes a new pre-
diction model that combines gaussian process regression and bayesian
optimization methods. Firstly, the interquartile range method and the
Savitzky-Golay filtering methods are used to denoise data. Appropriate
input variables are identified based on spearman correlation analysis to
reduce the model redundancy. Secondly, the gaussian process regression
model tuned by bayesian optimization is established to predict the rate
of penetration. Finally, the public data sourced from the UTAH FORGE
Well 58-32 dataset are used to validate the proposed model. The results
indicate that the proposed model offers reliable prediction accuracy and
serves as a valuable reference for enhancing the rate of penetration during
the drilling process.

Keywords: Rate of penetration; Gaussian process regression; Bayesian
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1 Introduction

Rate of Penetration (ROP) plays a crucial role in enhancing drilling efficiency
and minimizing drilling cost, which reflects the depth drilled per unit time. Ac-
curate mathematical models relating rate of penetration to influential factors
are vital for precise ROP prediction [1]. The influence of varying drilling vari-
ables on ROP, coupled with its nonlinear, complex, and random characteristics,
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makes it challenging to mitigate the effects of non-fixed variables like geological
conditions and equipment features [2].

Existing ROP prediction models can be categorized into two groups: tradi-
tional and machine learning models [3]. Physics-based traditional models includ-
ing the well-known bourgoyne and young (BY) models [4] have limitations due to
their dependency on data analyse methods, bottom hole assembly requirements
and geological properties, resulting in suboptimal practical results [5].

To overcome these limitations, researchers have adopted machine learning
models such as back-propagation neural network (BPNN) [6], artificial neural
networks (ANN) [7], random forests [8], and extreme learning machines (ELM)
[9]. These models offer superior function approximation capabilities. Gan et al.
[10] optimized a support vector regression model using a hybrid bat algorithm,
which outperformed traditional methods. Similarly, Ahmed et al. [11] confirmed
the feasibility of intelligent algorithms in ROP prediction by analyzing the ac-
curacy of various models. However, conventional machine learning models of-
ten neglect the data distribution characteristics of feature variables during the
drilling process.

Considering that the distribution of key feature variables typically follows a
gaussian distribution, it is reasonable to view the drilling process as a gaussian
process. This insight leads us to the utilization of gaussian process regression
(GPR) as a more fitting model for ROP prediction. Within the gaussian pro-
cess regression framework, the accuracy of predictions is heavily reliant on the
selection of hyperparameters such as kernel functions [12]. To address this de-
pendency, a bayesian optimization algorithm is introduced for optimizing these
hyperparameters, thereby improving the predictive precision of the GPR model
for ROP prediction [13].

In this article, a new rate of penetration prediction method is proposed
using bayesian-optimized gaussian process regression. Firstly, the interquartile
range method and the Savitzky-Golay filtering methods are used to denoise
data. Then, a new bayesian-optimized gaussian process regression (BO-GPR)
prediction model is established for drilling process, which is a non-parametric,
probabilistic model that provides both predictions and uncertainty estimates.
Meanwhile, the bayesian optimization is utilized to optimize the hyperparame-
ters of the GPR model to enhance its predictive performance. Simulation results
are conducted using data collected from the UTAH FORGE Well 58-32 drilling
site.

2 Process description and scheme design

This section details the drilling process, analyzes the drilling characteristics and
provides a scheme of ROP prediction.

2.1 Process description and characteristic analysis

The overview diagram of the geological drilling process is depicted in Fig. 1.
During the drilling process, the drill-string applies sufficient weight-on-bit and
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rotary speed to the drill bit to ensure continuous rock breaking. Drill mud is
pumped into the hollow drill pipe via mud pumps, exits through the drill bit,
and carries the rock cuttings formed from the broken rock back to the mud pit
through the annulus.
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Fig. 1. Overview diagram of geological drilling process

The drilling variables are listed in Table 1. Drilling variables are divided into
operational variables and state variables. Operational variables include W, R,
Fin, and Fyyt. Wy, denotes the pressure utilized for rock breaking, R denotes the
rotary speed of the drill rod, and Fy, and Fj, denote the input and output flow
rate of the mud pump per unit time. The adjustment of Fj, is utilized to cool the
drill bit and transport rock cuttings back to the surface. State variables include
D, P,, Frop, Tin, and Toyug.

The design of reliable prediction modeling for the drilling process also needs
to consider the characteristics of the geological drilling process. The analysis of
drilling process characteristics can provide a design basis for prediction modeling,
and improve the efficiency and safety of the drilling process. The description of
drilling characteristics are as follows.

(1) Significant data noise: Factors like uneven soil hardness, information
loss, and sensor errors contribute to substantial high and low frequency noise
in drilling data. This manifests as abnormal values, missing data, and sudden
changes. Such noise can disrupt parameter balance, leading to incorrect data
rule learning and impacting the accuracy of mechanisms and machine learning
models.
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Table 1. Drilling variables

Variable Description Unit
Wh, Weight on bit KN
R Rotary speed r/min
Fin Flow in rate mg/min

Fout Flow out rate mg/min
Wp Wellhead Pressure KPa
D Depth m
P, Pump pressure KPa
St Surface torque KPa

Vkopr Rate of penetration m/h
T: Temperature in
Tout Temperature out
H; Hook load Kg

(2) Intense parameter coupling: Drilling variables are highly interconnected.
For instance, WOB, rotary speed, and torque show strong correlation, while vari-
ables like flow rate and depth significantly influence standpipe pressure. Changes
in one parameter induce variations in others due to the inherent mechanics of
drilling.

(3) Stochastic and uncertain nature: Drilling processes are inherently stochas-
tic and uncertain due to the unpredictable nature of the geological formations
being drilled. This unpredictability manifests as random variations in the drilling
data, which can be challenging to model using conventional methods. However,
these random variations often exhibit Gaussian-like properties, i.e., they tend to
follow a normal distribution.

2.2 Prediction scheme design

Based on the characteristics analysis of the drilling process, our prediction
scheme is divided into two stages. Fig. 2 depicts the framework of the proposed
method.

In the first stage, the outliers and noise are removed to enhance the quality of
the data. Furthermore, spearman correlation analysis is employed to select the
most relevant variables due to the inherent coupling in the data. This step helps
in reducing the dimensionality of the data and focusing on the most informa-
tive variables, thereby improving the efficiency and accuracy of the subsequent
modeling stage.

In the second stage, the BO-GPR prediction model is utilized to tackle the
uncertainty and randomness in the data. This model leverages the features se-
lected in the first stage to predict the ROP. The BO-GPR model is particularly
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Fig. 2. Framework of the ROP prediction model

suitable for this application due to its ability to handle the non-linearity, noise,
and stochastic nature of the drilling data.

3 Prediction model of rate of penetration

This section outlines the required data preprocessing and modeling methods for
a precise ROP prediction model.

3.1 Data preprocessing and feature selection

The drilling site environment is complex, with various interferences that lead to
some white noise in the data signals received by the measuring instruments. In
order to enhance the quality of drilling data, it is essential to remove outliers
and minimize noise. The Interquartile Range (IQR) method and Savitzky-Golay
filtering technique are employed for this purpose. The IQR method is utilized
for outlier detection and removal, while the Savitzky-Golay filter smooths the
data by reducing high-frequency noise without significantly altering the shape
and width of the signal. This ensures that the filtered data closely resemble the
original waveform [14].

In addition, it is important to perform correlation analysis to minimize model
redundancy and enhance model precision. The Spearman correlation coefficient
method is used for this analysis. The the spearman correlation coefficient be-
tween Vrop and drilling variable X is expressed as

6> (pi — ¢:)*

X)=1-
p(Vrop, X) nm?—1)

(1)
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where p; represents the rank of Vrop, ¢; represents the rank of drilling variable
X, and n represents the number of observations. A higher value of p signifies a
stronger correlation between the two variables. The variables with the highest
correlation coefficients with Vyop will be selected for subsequent regression anal-
ysis. Table 2. summarizes the spearman correlation between Vrop and drilling
variables.

Table 2. Spearman correlation between Vrop and drilling variables.

drilling variables Spearman correlation coefficient
D -0.78
H; -0.74
Fin 0.64
W -0.60
R 0.51
P, -0.50

3.2 Gaussian Process Regression model

The drilling process is inherently stochastic and uncertain due to unpredictable
geological formations, leading to data variations that often exhibit Gaussian-
like properties. This makes GPR suitable for modeling drilling data. Combining
GPR with bayesian optimization allows for effective handling of uncertainties
by optimizing hyperparameters, improving the model’s accuracy and reliability.
Thus, the BO-GPR model is ideal for predicting ROP during drilling process.

GPR is a kernel-based machine learning approach based on statistical learn-
ing and Bayesian theory [15]. This approach is not only suited to handle com-
plex regression problems such as small sample size, high dimensionality, and
nonlinearity, but also has strong learning and generalization abilities. As a non-
parametric method, this method organizes data in a way that any given subset
of the data always follows a multivariate Gaussian distribution.

In GPR, the mean function [base function p(X)] and covariance function
[kernel function k(X, X’)] are used to represent the real process, where X and
X' indicate different inputs, and f(X) represents the output. The mean function
and the covariance function are expressed as

k(X X') = E[(f(X) — u(X)) (f(X') = u(X))]. ()
GPR is expressed as

F(X) ~ Gp(u(X), k(X, X)), (4)
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where F represents the expected function; G p represents the Gaussian process.
In the ideal scenario, a Gaussian process can be considered noise-free. In this
case, the joint prior distribution of the training output y; and the test output
fx can be represented as

1) () e

K (X X)=| . S (6)

k (@, 21) k(25 25) - k(2 27)

where N represents Gaussian distribution.

The drilling process involves multiple process variables and strong nonlinear
complex characteristics. At the same time, feature variables such as Wj, mainly
follow a Gaussian distribution, suggesting that the drilling process can be viewed
as a Gaussian process. Therefore, adopting the GPR method to construct a ROP
prediction model can lead to enhanced predictive performance [16].

After feature selection, 6 drilling variables: Wy, R, Fin, D, P, and H; are
utilized as input variables of the GPR model. The Vyop is the target variable of
the model.

However, for the ROP prediction in actual drilling processes, noise-free pre-
dictions are often inaccurate because they do not consider the randomness in
the observations. Therefore, in this scenario, Gaussian white noise, reflecting
the randomness in the observed results, is incorporated into the Gaussian pro-
cess regression model. Transforming the noise-free form into a noisy form, the
Vrop prediction model is expressed as

Vrop = [(X) ~ Gp(u(X), k(X, X")) + ¢, (7)

where € represents Gaussian white noise which obeys ¢ ~ N (0, U%), data set X
is the model inputs

X:{vaR7En7D7Pp7Hl}~ (8)

Then, the prior distribution of Vyop is expressed as
Veop ~ N (u(X), 5(X, X") + 02 1) , ()

where I, represents the n-dimensional identity matrix. Introducing new model
inputs as X, and the corresponding predicted output as Vrop. Assuming that
Vrop and Vrop follow the joint Gaussian distribution, their joint prior distri-
bution can be described as

(10)

|:VROP] "N {N(X)} K(X,X)402I, K (X, X
Vrop L ’

K(X,X) K(X X
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In Gaussian process regression methods, the accuracy of predictions largely
depends on the choice of the kernel function k(X,X’) used to represent the
covariance. The functional forms of the mean (base) function and covariance
(kernel) function can be considered as Gaussian process hyperparameters, which
also include length scale, signal variance, and noise variance. To achieve better
prediction results, optimization of these hyperparameters is necessary, involving
the selection of optimal mean (base) function and covariance (kernel) function,
length scale, signal variance, noise variance, among others.

3.3 Model hyperparameter optimization

Machine learning algorithms involve various hyperparameters, and optimizing
these is crucial because they greatly influence model behavior. Hyperparame-
ters can be set manually or automatically, with manual methods being time-
consuming and potentially ineffective. Recently, Bayesian optimization (BO)
has become widely used for hyperparameter tuning. BO optimizes the objec-
tive function by iteratively updating the posterior distribution based on new
sample points until it closely matches the true distribution. In essence, it uses
insights from previous parameters to better adjust the current ones [17].

Bayesian optimization offers several advantages over grid search or random
search:

(1) Utilization of Gaussian processes: Bayesian optimization adopts Gaussian
processes and considers past parameter information for continuous updates, un-
like grid or random search methods.

(2) Efficiency in parameter tuning: Bayesian optimization typically demands
fewer iterations compared to grid search, making it a more efficient choice,,
particularly with a large number of variables.

(3) Global optimization potential: In the case of non-convex problems,
Bayesian parameter optimization is more likely to identify the global optimum
instead of getting trapped in local optima, which can be a limitation of grid or
random search methods.

As an effective global optimization algorithm, Bayesian optimization can ob-
tain the optimal solution z* of the objective function f(X) within a given range
of variables by first obtaining the initial distribution of f(X) through random
sampling and calculation, and then optimizing the objective function internally.
Its expression is as follows

x* = arg géiBf (z). (11)

where z is hyperparameters; D is the search space of z; f (z) is the objective
function. The Bayesian optimization-based Gaussian process regression model is
known for its robust flexibility and ability to capture nonlinear relationships in
the data, so it’s used in this article.
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4 Simulation and results analysis

In this section, the simulation environment is described, and the application of
our model within this setting is presented. The results are then discussed. The
performance of the proposed model is assessed by using a public drilling dataset
to simulate ROP prediction through Bayesian Optimized Gaussian Process Re-
gression (BO-GPR). Additionally, the proposed model is compared with four
widely used models, including Random Forest, Decision Tree, and BP.

4.1 Simulation setup

The data used in this article is sourced from the Utah FORGE geothermal
well 58-32, available at https://gdr.openei.org. The dataset includes 27 drilling
performance variables and comprises 7,311 observations. Due to the presence
of many outliers and noisy data, data preprocessing and feature selection were
necessary.

The boxplot of the drilling dataset is shown in Fig. 3, which clearly demon-
strates whether each drilling variable contains outliers, based on which we can
remove these outliers.
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Fig. 3. Boxplot of the drilling dataset.

The actual data, which contains many peaks and mutations, is denoised
using the Savitzky-Golay filtering method, as shown in the Fig. 4. The data
curve after applying the Savitzky-Golay filter is smoother and clearer in terms
of curve profile compared to the original data. It can be seen that the Savitzky-
Golay filter effectively removes noise interference from the original signal, and
the denoised data still retains the original data’s variation characteristics. It is
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noteworthy that the smoothing factor we set is 0.05, as we found that the larger
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the smoothing factor, the worse the regression effect.
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Fig. 4. Data denoising of actual drilling process variables.

After data preprocessing, drilling variables are selected using the spearman
correlation coefficient [18]. The correlation coefficients between the drilling vari-
ables and Vgop are shown in Fig. 5, which indicates that Vrop is strongly
influenced by D, Hy, Fi,, Wy, R, and P,, with correlation coefficients of -0.76,
-0.73, 0.61, -0.58, 0.57, and -0.45, respectively. In contrast, Vrop is only weakly
influenced by the other features.

Therefore, this article selects the following features or drilling variables in
drilling process:

Target variable v : VRop.

drilling variables X;: D, Hy, Fi,, Wy, R and P,.

4.2 Prediction results

After preprocessing and feature selection, split the data into 80% training and
20% test sets. Use 20% of the training set as a validation set for each fold in
5-fold cross-validation to enhance model generalization [19].

The ROP prediction results of the model proposed in this article are illus-
trated in Fig. 6. The prediction curve closely aligns with the actual drilling data,
demonstrating the model’s capability to accurately reflect the real-world drilling
process. This alignment not only validates the effectiveness of our approach but
also underscores its potential as a reliable tool in drilling operations.

To further illustrate the model’s performance, Fig. 7 provides a detailed view
of the prediction error. The error range falls between [-1, 1], which is within the
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Fig. 6. ROP prediction results of the proposed method.

acceptable limits for drilling operations. This narrow error margin further attests
to the model’s precision and its ability to provide reliable predictions.

Therefore, the proposed model exhibits excellent performance in predicting
the ROP, with a high degree of accuracy and a satisfactory error range. These
results highlight the model’s robustness and its potential to enhance efficiency
and accuracy in drilling operations.

4.3 Analysis and discussion

The performance of the prediction models was evaluated based on three criteria:
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Fig. 7. Prediction error of the proposed method.

(1) coefficient of determination (R?):
i)’ -
(2) Root Mean Squared Error (RMSE):

Re = \/i Zzn (i — ) (13)

(3) Mean Absolute Error (MAE):

1 )
Me= = lyi — il (14)

n

where y; is the actual value of Vyop; ¢; is the prediction of Vrop; and g; is the
average value of Vrop.

To verify whether the BO-GPR model has superiority over other optimized
intelligent models, the random forest model [18], decision Tree model [14], and
BP neural network model [6] were selected for comparative analysis. The optimal
hyperparameters of each model are shown in Table 3. After using the identical
training dataset to train all models, the simulation results of each model are
obtained by predicting the identical test dataset. The comparison of prediction
results of each model are shown in Fig. 8, which indicates that the predictive
values of our BO-GPR model exhibit a consistent trend with the actual data.

Furthermore, the correspondence between the actual test data and prediction
results of each model is visually depicted in Fig. 9. Comparison of aforementioned
evaluation criteria of different models is shown in Table 4., which indicates that
our BO-GPR model exhibits superior prediction accuracy and model robustness,
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Table 3. The optimal hyperparameters of each model.

Model Model hyperparameters variables values
Sigma 22.288
BO.GPR BasisFunction Zero
KernelFunction Isotropic Exponential
KernelScale 0.005057
EnsembleMethod Bag
BO-RF NumULearners 160
MinLeafSize 1
NumberOfPredictorsToSample 4
Decision Tree MinLeafSize 5
Train function Trainlgdx

BP

Transfer functions

hidden layer

tansig, purelin
15

-o-Actua
——Ours
——BO-RF[18]

13

——Decision Tree[14]
BP[6]

35
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Data Sample
Fig. 8. Comparison of prediction results.
with best values across every evaluation criteria, outperforming other three intel-
ligent models. Therefore, it can be concluded that the proposed BO-GPR model
is suitable to predict ROP in geological drilling process.
5 Conclusion
To precisely predict the ROP in complex geological drilling processes, this article

introduces a novel Bayesian optimization-based Gaussian Process Regression
(BO-GPR) model. The main advantages of the proposed model are as follows:
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Table 4. Comparison of evaluation criteria of each model

Model R? M, M,

Ours 0.969 3.572 1.094
BO-RF [18] 0.956 4.223 1.402
Decision Tree [14] 0.930 5.263 1.594
BP [6] 0.838 8.045 3.182

(1) Themodel effectively handles the inherent stochasticity and uncertainties
in drilling data by optimizing hyperparameters, thereby capturing the underly-
ing data structure and providing more accurate and reliable predictions of the
drilling rate.

(2) By using robust data preprocessing techniques like the IQR method and
Savitzky-Golay filtering, and selecting input variables based on Spearman corre-
lation analysis, the model reduces data noise and redundancy, thereby improving
predictive accuracy.

(3) The model shows superior performance compared to other widely used
ROP models, as demonstrated by a case study using public data from the UTAH
FORGE Well 58-32 dataset.

In the future, we will persist in refining our method and integrate more
efficient algorithms to further enhance ROP prediction, laying a foundation for
future ROP optimization.
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