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Abstract. With the increasing number of medical tasks, the existing
medical robotic task allocation systems are facing significant pressure.
This paper proposes a multi-objective optimization model based on goal
programming to address this issue. The model prioritizes urgent medical
tasks with the primary goal of minimizing task value loss, thereby reduc-
ing patient health risks. Additionally, it aims to minimize resource con-
sumption to ensure task sustainability. To solve this model, an efficient
multi-objective improved ant colony optimization algorithm(MOIACO)
is proposed. This algorithm employs an adaptive heuristic function and
a non-uniform pheromone initialization mechanism to guide task selec-
tion decisions, enhancing efficiency and accuracy. Experimental results
demonstrate that the algorithm exhibits excellent convergence speed,
solution quality, and flexibility in solving MRTAS problems, potentially
reducing the burden on medical staff and improving the efficiency of
medical institutions.

Keywords: Multi-objective Optimization - Task Allocation - MOIACO
- Medical Scenarios.

1 INTRODUCTION

The development of multi-robot systems (MRS) has gone through several key
phases, from the 1960s when the system was first proposed and investigated,
through the 1980s and 1990s when it underwent full theoretical development,
experimentation and application, to the early 21st century when it achieved
a major technological breakthrough, and then in recent years when it entered
the intelligence and autonomy phase. Early research focused on the autonomy
and basic cooperation of individual robots, and with the development of dis-
tributed control and task assignment algorithms, multi-robot systems have grad-
ually demonstrated significant value in application scenarios such as warehousing
and logistics [1], search and rescue missions [2], unmanned aerial vehicle opera-
tion [3,4]and medical care [5].
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In recent years, the application of MRS in the medical field has received
extensive attention and in-depth research. Many researchers are committed to
using robots to assist medical work, from surgical assistance robots [6] to hos-
pital logistics robots [7], all of which show the great potential of multi-robot
systems in improving medical efficiency and reducing manpower costs. However,
the structure of medical robots is extremely complex and requires a specific en-
vironment for installation, which not only makes them extremely expensive to
produce, but also results in high post-installation maintenance and manpower
costs, inevitably leading to a significant increase in the cost of medical treatment
for patients [8]. Against this background, Multi-Robot Task Allocation System
(MRTAS) has become an important research direction, which aims to optimise
robot resource utilisation and task execution efficiency, and make the system’s
efficiency and task completion optimal through reasonable task allocation [9],
which can improve the efficiency and quality of medical services, reduce opera-
tional costs, and reduce the workload of healthcare workers.In addition, MRTAS
is able to respond quickly to unexpected situations and emergencies, providing
timely and effective medical rescue and support, thus ensuring the safety and
health of patients. These advantages make MRTAS important in improving the
management and operation of healthcare facilities.The solution methods of MR-
TAS can be classified into two main categories: exact methods and heuristic
algorithms.Exact methods [10] aim to provide one or more optimal solutions
to optimisation problems. For small task sizes, exact methods usually provide
effective solutions. However, as the size of the problem increases, exact methods
often face exponentially increasing computational costs and may be difficult to
solve exactly. Heuristic algorithms represent an alternative to, for instance, large
optimisation problems for which an optimal solution cannot be obtained within
a reasonable time frame. This approach offers greater flexibility in practical ap-
plications and is particularly useful for problems that require resolution in real
time on large numerical instances. Heuristic algorithms, which can rapidly pro-
vide solutions to problems, have been subjected to more thorough investigation
than exact methods and have been demonstrated to constitute an effective basis
for achieving suboptimal solutions.

In recent years, many researchers have focused on solving the MRTAS prob-
lem and proposed a variety of innovative heuristic algorithms. Chunmei Zhang
et al proposed a distributed modal difference evolutionary algorithm [11] to solve
the discrete problem.Nathan Lindsay et al proposed a task-oriented distributed
allocation algorithm [12] to solve the task allocation problem in unmanned aerial
systems, which can dynamically adjust the allocation result to adapt to the en-
vironmental changes, and is suitable for dynamic task allocation scenarios. Wei
et al proposed a multi-objective particle swarm optimisation method [13] for col-
laborative multi-robot task allocation problems, which provides a competitive
and general solution for multi-objective optimisation problems in continuous
space.Javier G et al introduced a cooperative game theory framework [14] for
multi-robot task allocation problems, demonstrating its superiority over tradi-
tional methods such as genetic algorithms across diverse problem instances.
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For task allocation in medical scenarios, Gautham P proposed a distributed
algorithm [5] based on auction and consensus principle, which improves the task
processing efficiency and reduces the communication bandwidth requirement.
Ma et al. proposed a discrete difference particle swarm algorithm and mathe-
matical model [15] to deal with multi-intelligent body task allocation problem
in epidemic scenarios. Most of the above studies proposed some efficient objec-
tive optimisation algorithms, but rarely considered the priority of the objective
tasks. It is crucial to consider the priority when allocating tasks in hospital sce-
narios because it is related to the safety and health of patients, which ensures
that emergencies are handled in a timely manner, prevents deterioration of con-
dition, optimises the efficiency of the use of human and equipment resources,
reduces the waiting time of patients, and improves the quality of service.

Ant Colony Optimisation (ACO) [16] is a meta-heuristic method inspired
by the pheromone tracking behaviour of a number of real ant species. ACO was
originally designed to solve single-objective combinatorial optimisation problems
[17].Grayna Starzec proposed a two-dimensional pheromone-based ACO algo-
rithm for solving single-objective transport problems [18]. It can benefit from the
ability to encode more information in a more complex pheromone structure.Due
to the remarkable results achieved on these problems [19], the ACO algorithm
was soon extended to solve problems with more complex features, especially
multi-objective functions. Manuel et al. proposed an auto-configurable multi-
objective ant colony optimisation algorithm frameworkto solve multi-objective
optimisation problems [20] , which greatly simplified the process. Chen et al.
proposed an effective multi-objective ant colony algorithm [21] to address the
challenge of collaborative task allocation for heterogeneous unmanned aerial ve-
hicles. The algorithm incorporates a novel pheromone updating mechanism and
four newly defined heuristics, which enhance the convergence speed and search
efficiency of the algorithm.

In this paper, we constructed a resource consumption model and a task ben-
efit model for MRTAS of medical services. We then adopted the idea of goal
programming in operations research to solve the problem hierarchically. Finally,
we considered the actual problem, set the priority of medical tasks. A multi-
objective improved ant colony optimisation (MOIACO) is proposed as a solution
to the model. In conclusion, the contributions of this paper can be summarised
as follows:(1) In the medical service scenario, the MRTAS mathematical model
is introduced, which minimises the loss of task value and minimises the resource
consumption by setting the medical task priority mechanism.(2) Considering the
urgency and task complexity in the medical environment, a new heuristic infor-
mation and pheromone updating strategy is designed, the discrete ant colony
algorithm is improved by combining global and local search, and a pheromone
concentration adaptive mechanism is introduced to dynamically adjust the initial
pheromone concentration according to the task priority to improve the adapt-
ability and efficiency of the algorithm in a dynamic and high-demand environ-
ment.(3) The establishment of an objective prioritisation mechanism to ensure
the minimisation of loss of task value, on the basis of which the minimisation
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of resource consumption of sub-priority objectives is further optimised. This ap-
proach not only effectively solves the multi-objective optimisation problem, but
also provides a more flexible and easy-to-interpret optimisation scheme, enabling
decision makers to make better trade-offs and choices.An objective hierarchical
mechanism is established to ensure that high-priority objectives (i.e. minimising
task value loss) are given priority, on the basis of which sub-priority objectives
(i.e. minimising resource consumption) are further optimised. This approach not
only effectively solves the multi-objective optimisation problem, but also provides
a more flexible and easily interpretable optimisation scheme, enabling decision
makers to make better trade-offs and choices.

The remainder of the paper is organised as follows: a multi-objective optimi-
sation model for MRTAS is presented in Section II. Section III provides a brief
introduction to the basic framework of MOTACO and describes the implementa-
tion of the algorithm in detail. Section IV presents extensive experimental data
and analyses. Section V presents the conclusions of this study.

2 MULTI-OBJECTIVE OPTIMISATION MODEL FOR
MRTAS

In the context of healthcare services, there often exist multiple conflicting op-
timization objectives. When executing tasks, MRTAS need to consider these
objectives comprehensively. This paper proposes a goal-based approach aimed
at minimizing both the task value loss and resource consumption incurred by
robot task execution in healthcare settings. By employing goal programming, it
becomes feasible to address multiple conflicting objectives simultaneously, en-
suring that the optimization process prioritizes the most critical objectives.

In this study, minimizing task value loss is designated as the primary op-
timization objective, aiming to prioritize urgent medical rescue tasks, mitigate
human health losses, and enhance the overall value of robot task execution sys-
tems. Subsequently, the secondary objective focuses on minimizing resource con-
sumption while maintaining the minimization of task value loss as a prerequisite.
This secondary objective aims to further optimize resource utilization efficiency,
reduce resource consumption rates, and ensure the sustainability of robot task
execution systems. By adopting this approach, the model can effectively tackle
multi-objective optimization problems, providing flexible optimization solutions
that empower decision-makers to strike a balance and make informed choices.
All parameters in the default model are known, and Table 1 lists the relevant
indexes, sets, parameters and variables used in this section.The model is given
by Egs. (1), (2) and constraints (3) to (13).

T
minF:aZd;r-i-bdj (1)

j=1
R=T=N (2)

st.
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Table 1: Mathematical Model Parameters

Symbol|Description

R Number of robots

T Number of tasks

Wij Workload of robot ¢ on task j

Cij Resource consumption of robot ¢ on task j
t; Execution time of task j

ki Maximum workload of robot ¢

Dij Success probability of robot i on task j

v Value of completing task j

Uuj Priority of task j

d;r, d; |Value loss deviation variables of task j
dS,d; |Resource consumption deviation variables
Clideal Ideal resource consumption value

Tij Binary variable indicating if robot ¢ performs task j

The symbols R and T represent the number of robots and the number of
tasks, respectively. The individual robots and tasks are denoted by the symbols
i and j, respectively. The following equation shows that the number of robots
is equal to the number of tasks. The weight parameters ¢ and b are used to
balance the task value loss and resource consumption.The objective function
(1) minimizes both task value loss and resource consumption of MRTAS while
ensuring task allocation quality. Deviation variables dj+ and d; represent cases
where task completion value exceeds or falls below expected values, while d and
dF denote instances of actual resource consumption below or above expectations.
The main reason for using only dj and not considering d; in the objective
function (1) is that we are more concerned with the additional cost or loss of the
uncompleted task rather than the loss of value of the completed task. And the
emphasis is on cases where actual resource consumption exceeds expectations
(dF), given the potential for cost escalation or resource scarcity in health care.
Constraints (11) and (12) prioritise minimising task value loss while considering
the rationality of resource consumption, with weight normalisation ensuring a
combined weight of 1 for task value loss and resource consumption. Equation (2)
maintains the integrity and consistency of task scheduling, thereby aligning the
model with real world scenarios.

R
Equation (3) computes total expected task value loss Fy, where [] (1—g;;x:;)
i=1

represents the probability of task j not being completed by anly robot, and
v; denotes task j’s value. Equation (4) represents task value loss model con-
straints, aiming to minimize total expected task value loss F;. Hence, equation
(4) ensures the task value loss model meets expectations through the constraint
d; — d;r = 0. Equation (5) calculates total resource consumption by all robots,
while equation (6) represents resource consumption model constraints. Here, en-
suring total system resource consumption F5 matches ideal consumption Cigeal
is essential. Thus, equation (6) ensures system resource consumption model com-
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pliance with expectations through the constraint d; — d} = 0. Constraints (7)
and (8) guarantee each task is assigned to one robot and each robot is allocated
one task. Constraint (9) prevents robot workload exceeding maximum available
capacity, while constraint (10) limits robot working time. Constraint (13) indi-
cates whether robot i executes task j.

3 MOIACO ALGORITHM

This paper presents a multi-objective improved ant colony (MOIACO) algo-
rithm, specifically designed to address the multi-robot task allocation problem
in the context of the aforementioned medical scenario. The adaptive heuristic
function dynamically adjusts the search direction of the ants based on the task
priority, and the non-uniform pheromone initialisation motivates the ants to ex-
plore the solution space more extensively at the early stage of the search. The
pseudo-code for the MOTACO algorithm is provided in Algorithm 1. Relevant
parameters are detailed in Table 2, and Fig.1 illustrates the flowchart of the
MOIACO algorithm.

Table 2: Parameter Values and Results

Symbol |Description

tabu_ list |Used to record the tasks that each ant has done

m Number of ants in the colony

Iter__max|Maximum number of algorithm iterations

P Rate at which pheromone evaporates

Q Pheromone enhancement coefficient

To Initial value of pheromone

At Increment value of the pheromone

« Weighting factor for pheromone information

154 Weighting factor for heuristic information

k A proportional constant used to adjust the initial pheromone value.
d;-", d;  |Variables representing task value loss

df, d- |Variables representing resource consumption deviation

3.1 Adaptive Pheromone Initialization

In the original ACO algorithm, the heuristic function is calculated solely on the
basis of the inverse of the distance between the optional nodes, without con-
sideration of task-related factors. This results in the ACO algorithm exhibiting
deficiencies in task assignment, rendering it incapable of effectively addressing
the urgency and diversity of medical tasks. Consequently, the overall efficiency
and accuracy of task assignment are diminished. To address this issue, an adap-
tive heuristic function has been introduced that considers a range of factors,
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Algorithm 1 MOTACO (Multi-Objective improved Ant Colony Optimization)

1: Initialize parameters (R, T, u, q, ¢, t, v, k, time_limit, alpha, beta, rho, g, tau_0,
Iter__max, m)

2: Initialize pheromone matrix (tau) with initial value tau_0 of size T x T

3: for each iteration from 1 to Iter__max do

4:  Update dynamic task and resource states

5:  for each ant from 1 to m do
6: Initialize ant position and tabu list
T Allowable task set allowed_ tasks = 0, 1, ..., T-1
8: Solution solution = [-1, -1, ..., -1] (size T)
9: for each robot from 1 to R do
10: if allowed_ tasks is empty then
11: break
12: end if
13: Current task current_ task = -1
14: for step within range(T) do
15: Assign task to robot solution[task] = robot
16: Update current task current_ task = task
17: Remove task from allowed tasks
18: Add task to tabu list
19: end for
20: end for
21: Add solution to solutions list
22:  end for

23:  Update global best solution and global best objective function values
24:  Local pheromone update:
25:  for each edge (7,7) do

26: taufi][j] = (1 — rho) - tau[i][j] + rho - tau_0

27:  end for

28:  Compute deviation variables:

29:  Calculate task value loss and resource consumption deviation based on task

values and resource consumption
30:  Update global pheromone:

31:  Calculate delta_tau based on objective function values
32:  for each edge (i,j) do

33: taufi][j] = (1 — rho) - tau[i][j] + rho - delta_tau

34:  end for

35:  Adaptive pheromone update:
36:  for each edge (7,j) do

37: if (¢,7) is in pre-selected area then

38: tau[i][j] = tau_max

39: else

40: tau[é][j] = tau_min

41: end if

42:  end for

43: Check if solution satisfies constraints:

44:  if solution does not satisfy constraints then
45: Reset pheromone matrix tau and tabu list, and restart current iteration
46:  end if

47: end for

48: Output global best solution and global best objective function values
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including task priority, task success probability, task resource consumption, and
task execution time. The heuristic function thus designed can better guide indi-
vidual ants’ decision-making in task selection, enabling them to more accurately
assess the priority and adaptability of each optional node. This improves the pur-
pose and efficiency of the algorithm. Concurrently, the design of this adaptive
heuristic function enables the algorithm to more effectively adapt to the urgency
and diversity of medical tasks, thereby enhancing the overall efficiency and ac-
curacy of task allocation.The proposed adaptive heuristic function is expressed
by Eq. (14).

Uijqij
Nij = cisly (14)

The heuristic information is calculated by integrating factors representing the
importance of tasks and their likelihood of success. Specifically, the numerator
of the heuristic information consists of the task priority u; and the execution
success probability g;;, reflecting the significance of tasks and their likelihood
of completion. Meanwhile, the denominator comprises the resource consumption
c¢;; and the task execution time ?;, representing the cost and duration of task
completion. Consequently, ants are inclined to select task nodes with higher
priority and success probability, along with lower resource consumption and
execution time when choosing the next task node. This enhances the efficiency
and accuracy of task allocation.

3.2 State Transition Probability Rule

In traditional ant colony algorithms, the state transition probability rule serves
as a fundamental component, guiding ants in selecting the next task. We employ
this rule to compute the probability of ants transitioning from one task to another
based on the priority of tasks and the historical concentration of pheromones
along the paths. Specifically, at the position of ant k on task e, the determination
of whether to move from task e to task f is governed by the computation of the
state transition probability Pff. The probability in question is given by Eq. (15).

(Tef)a(nef)ﬂ f
— 7, if f € allowedy
P::f == f€al§wedk( Ef) (nEf) (15)
0, otherwise

Here, 7.5 denotes the concentration of pheromones on the path from task
e to task f, and 7.y represents the heuristic information. Parameters o and
[ respectively denote the relative importance of pheromone concentration and
heuristic information in task selection. Through this rule, we achieve a better
balance between task priority and historical experience along paths, thereby
enhancing the efficiency and performance of medical task allocation.

3.3 Non-uniform Pheromone Initialization

In the initialization phase of the original ACO, pheromones are usually uni-
formly distributed across all paths during the initialization phase. This uniform
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Fig. 1: Flowchart of MOIACO algorithm

distribution often fails to differentiate between task priorities, causing ants to
randomly select tasks in the initial stage and search paths blindly, which reduces
the efficiency and performance of the algorithm. However, in medical scenarios,
task priority is crucial for task execution. To enhance the algorithm’s awareness
of task priority, this study introduces a non-uniform pheromone initialization
mechanism [22]. This mechanism ensures that high-priority tasks receive higher
initial pheromone concentrations, thereby attracting ants to these tasks more
quickly and improving the algorithm’s selection and processing capability for
high-priority tasks. The proposed non-uniform pheromone initialization expres-
sion is given by Eq. (16).

The proportional constant, denoted by the symbol g, is employed to adjust
the initial pheromone value. By selecting an appropriate value for g, the initial
pheromone concentration can be ensured to be within a reasonable range. For in-
stance, if the task priorities range from 1 to 10 and the desired initial pheromone
concentration range is [0, 1], then g can be set to 0.1. The pheromone increment
Aty is calculated based on the priority u; of task j, as shown in Eq. (17).

Ter(initial) = g - u, (16)
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Ay = =24 (17)

N
> j=14j
The following experiments illustrate the advanced nature and rationality of

the MOIACO framework. The algorithm exhibits faster convergence speed and
superior global values.

4 EXPERIMENTAL SETUP AND RESULTS
ANALYSIS

In medical scenarios, the timeliness and complexity of tasks often make it difficult
for traditional algorithms to effectively solve the multi-robot task assignment
problem. Therefore, we propose the MOIACO algorithm. In the experimental
part of MOTACO, we have designed a series of experiments to comprehensively
evaluate the performance and applicability of the improved ACO optimisation
algorithm for multi-robot task allocation systems in medical scenarios. These
experiments aim to provide an effective solution to the medical task allocation
problem and provide reliable theoretical support and practical guidance for real-
world applications.

First, we conducted parameter tuning experiments focusing on the key pa-
rameters in the ACO algorithm.In the algorithm experiments, to ensure the
accuracy of the results, we fixed other variables and focused on adjusting the
ranges of several key parameters. The parameter o was chosen to range between
1 and 3 to evaluate the impact of pheromone intensity on ant behavior at dif-
ferent levels. A lower « value indicates a smaller effect of pheromone, while a
higher a value indicates a larger effect, thus allowing us to find the optimal
balance point. The range for 5 was set between 2 and 5 to investigate the vary-
ing influence of heuristic information on ant decision-making behavior. A lower
B value reduces the impact of heuristic information, whereas a higher g value
enhances its effect. The range for p was set from 0.5 to 0.7 to adjust the rate
of pheromone evaporation. A higher p value results in faster pheromone decay,
while a lower p value leads to a longer retention time of pheromones, thus op-
timizing the pheromone update effect. Finally, the range for ) was set from 1
to 5 to control the magnitude of pheromone increment. A higher @ value in-
creases the pheromone concentration, which may accelerate the convergence of
the algorithm. By adjusting these parameter ranges, we can systematically eval-
uate their impact on algorithm performance and identify the optimal parameter
combination to enhance overall algorithm performance.

Next, task-size experiments were conducted using the previously selected pa-
rameters. The algorithm parameters, task attributes, and robot attributes were
held constant, while the number of tasks varied across nine different values,
ranging from 40 to 200. For each task size, twenty independent runs were per-
formed, recording the optimal objective function values. The mean, standard
deviation, minimum, and maximum values were calculated for each set of task
sizes. By limiting the maximum function evaluation time to 10,000 runs, we
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controlled the algorithm’s running time to ensure timely results while avoiding
excessively long runs. This experimental design allows for evaluating the algo-
rithms’ performance under different task sizes and provides guidance for scaling
up in real-world applications.

Table 3: Experimental Results for Different Task Counts

Task Count|Mean Standard Deviation|Minimum|Maximum
40 89.1393 [10.5326 78.8106 |95.0829
60 152.0720(10.9255 128.5607 [172.5526
80 204.2384(15.2454 194.7862 [220.5234
100 242.9256(15.1698 236.7611 |256.2717
120 339.3589(17.9601 300.3750 |369.1772
140 406.0688(21.6547 365.3570 |439.0107
160 460.6674(17.2234 433.2594 |495.7829
180 531.0143(30.9735 485.1256 |587.3427
200 594.0329(22.6477 558.3181 |615.4454

The findings, presented in Table 3, indicate that as the number of tasks
increases, the average, minimum, and maximum objective function values all
exhibit an upward trend. This suggests that the employed algorithm excels at
handling more tasks and can optimize the objective function more effectively in
complex scenarios. Additionally, the standard deviation of the objective func-
tion values increases with the number of tasks, indicating that the algorithm
maintains a certain degree of stability and adaptability when addressing larger-
scale problems. These results further underscore the algorithm’s superiority in
managing complex tasks.

Finally, algorithmic comparison experiments were conducted to evaluate the
performance of MOIACO against other commonly used task allocation algo-
rithms, including the difference evolutionary algorithmDE and the original ACO
algorithm. The specific results are presented in Fig.2. Figures a-d illustrate the
convergence curves of the three algorithms under T = 20, 50, 100 and 200, re-
spectively. The data presented above demonstrate that MOIACO consistently
exhibits excellent performance under different task allocation scales. The algo-
rithm’s high convergence probability and low objective function value indicate
a significant advantage in task allocation. Irrespective of the size of the task,
MOIACO converges rapidly and identifies the optimal solution, thereby demon-
strating excellent adaptability and efficiency. In contrast, the original ACO al-
gorithm and the DE algorithm perform poorly at certain task sizes.



Title Suppressed Due to Excessive Length 13

Somparison of Convergence Performance for MOIACO, ACO, and DE e Somparison of Convergence Performance for MOIACO, ACO, and DE

MOIACO
Aco
oE

MOIACO
Aco 240
DE

8

&
g8 8 8

Objective Function Value

Objective Function Value

Iy
&

® ; 120 E\—\—
100

o 10 2 3 4 s e 70 8 %0 100 o 10 2 3 4 s s 70 e s 100

Iterations Iterations.

(a) T at iteration 20. (b) T at iteration 50.
AOEOMDBNSOH of Convergence Performance for MOIACO, ACO, and DE SDOCOVY\FSHSOH of Convergence Performance for MOIACO, ACO, and DE
Wouco Voaco
= Ao A
DE &
360 750
s s
= =2
T 340 g
< S 700
g 320 =1
S S
H 2
e 300 EP
S 200 H
o o
“ . ]
20
220 550
o W w w w0 o w w0 mo ol w @ w0 mo w0 w0 w0
Iterations Iterations
(c) T at iteration 100. (d) T at iteration 200.

Fig. 2: Comparison of Convergence Performance for MOIACO, ACO, and DE

Table 4: Experimental Results of Different Algorithms

Algorithm| Mean [Standard Deviation|Average Runtime (s)
DE 259.227 18.4741 344.745
MOTACO |242.9256 15.1698 644.745

ACO 284.912 19.4615 659.65

Then,the performance of the three algorithms was compared at T=100, as
shown in Table 4. The study reveals that in the medical robot task allocation
system, the MOIACO algorithm exhibits a significantly lower average objective
function value compared to the other algorithms, indicating its clear advantages
in minimizing task value loss and cost expenditure. A lower objective function
value corresponds to reduced task value loss and cost expenditure, suggesting
that the MOIACO algorithm may more effectively reduce resource consumption
and risk in medical robot task allocation processes, thereby enhancing system
efficiency and sustainability. Furthermore, the relatively low standard deviation
of the MOIACO algorithm indicates its higher stability. This suggests that the
MOIACO algorithm can consistently perform well under different environments
and conditions, thereby enhancing its reliability and practicality.

In this study, parameters such as task values, the probability of robot task
completion, and robot workload are assumed to be predetermined. All experi-
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ments took place on a 64-bit operating system with an x64 processor, equipped
with an Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz (with a maximum fre-
quency of 1.80 GHz) and 8 GB of RAM. MATLAB R2022b served as the pro-
gramming environment.

5 CONCLUSION

This study proposes a novel multi-objective optimization model tailored for MR-
TAS to address the escalating demand for efficient task allocation in medical set-
tings. The model employs goal programming to prioritize urgent medical tasks
while minimizing task value loss and optimizing resource utilization. To effec-
tively manage the model, we introduce a multi-objective improved ant colony
optimization algorithm that integrates an adaptive heuristic function and a non-
uniform pheromone initialization mechanism.

The experimental results demonstrate several significant advantages of the
proposed method: Firstly, it significantly improves the efficiency and accuracy of
MRTAS task allocation by prioritizing critical tasks and optimizing resource al-
location. Secondly, the algorithm exhibits excellent performance, with empirical
validation showing fast convergence rates and superior solution quality. Addi-
tionally, by minimizing task value loss and optimizing resource utilization, the
method ensures the sustainability of task execution in healthcare environments.

In summary, this study effectively addresses the critical issue of optimizing
task allocation within MRTAS. By introducing an innovative optimization model
and a highly efficient algorithm, it achieves the goals of streamlining the oper-
ational dynamics of medical robotic systems, enhancing system efficiency and
sustainability, thereby reducing the burden on healthcare professionals and im-
proving the quality of healthcare services. The results indicate that the MOTACO
algorithm has significant potential and practical value in enhancing the efficiency,
stability, and sustainability of medical robotic task allocation systems.
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