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Abstract. Unknown periodic disturbances are widely found in practi-
cal control engineering. A least-mean-square-based adaptive estimator
(LMS-AE) is developed to cope with this kind of disturbances. Enlight-
ened by the LMS adaptive filter, an LMS-AE is devised to iteratively
learn the amplitude and phase of the components of the periodic dis-
turbances, after the frequency characteristics are extracted by a data-
driven technique. Then, the output error between the real system and
the observer is introduced supervise the learning process of the pending
weights by the LMS algorithm. Moreover, the convergence condition of
the weight updated law is given. The stability conditions of the LMS-
AE-based closed-loop control system are analyzed by the separation the-
orem. The effectiveness and superiority of this proposed control method
are verified by a case study and comparisons with other methods.

Keywords: Adaptive disturbance estimator · Least mean square (LMS)
· Equivalent input disturbance (EID) · Fourier series.

1 Introduction

Periodic repetitive motions are widely found in automatic control systems. Al-
though these systems are capable of high precision and long time operation, such
as rotary machines, and elastic robots [1, 2], the simultaneous repetitive motions
can also introduce periodic disturbances. Moreover, these disturbances not only
have an impact on the performance of the system, but also destabilise the system
[3].

For periodic disturbances, they are generally equivalent to a combination
of fundamental and harmonics waves, so how to use the frequency information
of the components of the disturbances for rejection is the most critical issue.
Disturbance observer-based control (DOBC) is a widely used method for es-
timating and compensating for disturbances. Based on the DOBC, in [4] the
periodic observer (PDOB) which uses an adaptive notch filter to estimate the
fundamental frequency of the periodic disturbance, then compensates the peri-
odic disturbance. State observer is another useful tool for disturbances rejection.
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Not only that, many periodic disturbances rejection methods incorporate adap-
tive approaches. In [5] a lumped disturbance is estimated by the DOB for the
initial time period and stored in memory storages, then update the information
of the disturbances for each time period by the periodic adaptation law. And
for eliminating the frequency-varying periodic disturbance, an adaptive periodic-
disturbance observer (APDOB) was proposed [6].

However, the DOBC method requires an accurate model of disturbances. The
disturbance rejection performance of the DOBC method is not satisfactory when
perturbations are present in the disturbance model [7]. So many applications are
limited due to this. The equivalent-input-disturbance (EID) method was devel-
oped to eliminate this limitation [8]. In [9], She and Kou compared the DOBC
method with the EID approach. The result showed that the EID method is
more practical than the DOBC method because the latter assumes the presence
of equivalent input disturbance and it is easier to tune the disturbance-rejection
performance. The EID method equivalently compensates for the disturbance in
the input channels of the system, ultimately reject the effects of the disturbance
at the output of the system. This method is effective for both matched and
unmatched interference. Additionally, it simplifies the configuration of the es-
timator by eliminating the need for a disturbance model, inverse dynamics of
plant, and input matrix of disturbances. The effectiveness of the EID method
has been demonstrated in numerous systems [10–12].

The adaptive algorithms were derived using the filtering method and optimal
prediction to solve the Wiener-Hoff equation [13]. The least-mean-square (LMS)
adaptive filter (LMS-AF), is a formal method in processing signals containing
noise [14]. By updating the weight against the error gradient, the principle of
the algorithm is to minimize the error between output and expectation.

Among the above methods, although LMS-AF is a standard filtering adap-
tive algorithm, it can only have pretty good effect on some signals including
Gaussian noise due to the limitation of the input. The EID method can suppress
most of the noises well, but due to the structure, it has a weak effect on the
mismatched high-frequency disturbances. This makes us design the LMS-based
adaptive estimator (LMS-AE), a disturbance rejection estimator that combines
the advantages of both methods.

2 SYSTEM CONFIGURATION

The configuration of the developed LMS-AE-based system is shown in Fig. 1.
It has five parts: a plant, a Luenberger observer, an LMS-AE, a state feedback
controller, and an internal model.

Consider the following discrete system with a disturbance{
x(k + 1) = Ax(k) +Bu(k) +Bdd(k)
y(k) = Cx(k)

(1)

where x(k) ∈ Rnx is the state; and u(k) ∈ Rnu , y(k) ∈ Rny , and d(k) ∈ Rnd are
the input, output, and the disturbance, respectively; and A, B, and C are real
constant matrices, and Bd is the unknown input matrix of the disturbance.
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Fig. 1. Structure of LMS-AE-based disturbance rejection control system

The following assumptions are made for system design.

Assumption 1 The nominal plant (A,B,C) is controllable and observable.

Assumption 2 The unknown periodic disturbance d(k) satisfies

∥d(k)∥ ≤ dm (2)

where ∥d(k)∥ is the 2-norm of d(k) , dm is an unknown positive number.

Remark 1. Assumption 1 is standard for system design [18] and Assumption 2
usually holds in practice.

A Luenberger observer is used to obtain the state estimate of the system{
x̂(k + 1) = Ax̂(k) +Buf (k) + L[y(k)− ŷ(k)]
ŷ(k) = Cx̂(k)

(3)

where x̂(k), uf (k), ŷ(k), and L denote the state, the input, the output, and the
gain of the observer respectively.

Denote d̂e(k) as the output of the LMS-AE, and incorporating it gives the
following new control law

u(k) = uf (k)− d̂e(k) (4)

where uf (k) is the original feedback control law.
To ensure the tracking performance of the system, it can be assumed that

the internal model of the reference input r(k) is

xr(k + 1) = Arxr(k) +Br[r(k)− y(k)] (5)

where xr(k) is the state of the internal model, and Ar and Br are constant
matrices of suitable dimensions.

Based on the state x̂(k) of the observer, the original feedback control law is
taken as

uf (k) = Kpx̂(k) +Krxr(k) (6)

where Kp and Kr are the control gain.
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3 LMS-based Adaptive Estimator

Due to the unknown of the disturbances, a data-driven technique is used to
extract the characteristics of the external disturbance by the dynamics(3). Using
the obtained bases, the LMS-AE is devised to learn the corresponding phases
together with the amplitudes.

Define
x̃(k) = x(k)− x̂(k), ỹ(k) = y(k)− ŷ(k). (7)

Let
AL = A− LC. (8)

According to (1), (3), (4), (7), and (8), we obtain error state system{
x̃(k + 1) = ALx̃(k)−Bd̂e(k) +Bdd(k)
ỹ(k) = Cx̃(k),

(9)

Since ỹ in (9) represents the error between the output of real and nominal sys-
tem. It contains the effect of disturbance on the system so the characteristics
of the external disturbance can be extracted from ỹ. And ỹ, which reflects the
performance of disturbance rejection for system, is only affected by disturbance
d and EID estimate d̂e, so a threshold Th set for ỹ that extraction only happens
when the absolute value of ỹ is bigger than Th.

3.1 Frequency Extraction of Unknown Disturbances

By the Fourier series expansion, a periodic disturbance d(t) is decomposed as

d(t) =

∞∑
i=1

di(t) = A0 +

∞∑
i=1

Ai sin (2πfit+ φi) (10)

where A0 is the DC component, Ai are the amplitudes, fi are the frequencies,
and φi are the phases.

According to error state system (9), the frequency spectrum of the unknown
disturbances can be extracted from ỹ after the transient state fading away. There-
fore, some data-driven methods can be used to conduct the frequency spectrum
analysis and obtain fi using ỹ by fast Fourier transform (FFT) method when
the observer is designed to be stable.

3.2 LMS-based Learning algorithm

The LMS algorithm is an adaptive algorithm using instantaneous gradient. The
LMS-AF is a lateral filter based on the LMS algorithm, of which the inputs are
related to current and past values of c(k). Denote the input of the LMS-AF
ci(k) = c(k − i + 1), (i = 1, 2, . . . , n) where n is the filter dimension and k is
the sample number. By iteration along the direction of the LMS instantaneous
gradient, the pending weights wc

i (k) are able to approach the optimal weights.
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The updated law of the pending weights of the LMS-AF is

wc
i (k + 1) = wc

i (k) + µcci(k)e(k) (11)

where µc is fixed related to the input, e(k) = yd(k) − y(k) is the error at the
k-th step, and yd(k) and y(k) are the reference and real output of the filter. The
convergence condition for the weight is given by

0 < µc <
2

λc
max

(12)

where λc
max is the maximum eigenvalue of correlation matrix of the c̄(k) [14],

and c̄ = [c0, c1, · · · , cn]T .

3.3 Adaptive Estimator for Disturbance Rejection
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Fig. 2. Structure of LMS-AE.

The developed LMS-based adaptive estimator is shown in Fig. 2, where
dni(k)(i = 0, 1, · · · ,m) are the input of the LMS-AE including the fundamen-
tal and harmonic signal sequences from the frequency characteristics extraction,
which replace the sequence of current and past values, and wi(k) are the pend-
ing weights of dni(k), which are computed by the LMS algorithm. The error of
output ỹ(k) replaces the error of LMS-AF. What LMS-AE does is actually to
learn the amplitude and phase of these sinusoidal components.

The output of LMS-AE is summing by multiplying weights and inputs:

d̂e(k) =

m∑
i=0

wi(k)dni(k) (13)

where d̂e(k) is an estimate of de(k).
Similarly, the updated law of weights in LMS-AE are given by

wi(k + 1) = wi(k) + µdni(k)ỹ(k). (14)

Accordingly, the convergence condition for the weights are

0 < µ <
2

λdn
max

(15)

where µ is fixed related to the input, λdn
max is the maximum eigenvalue of the

correlation matrix of dn(k) [14], and dn = [dn0, dn1, · · · , dnm]T .
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Fig. 3. Equivalent structure of Fig. 1

4 Analysis and Design of Control System

The LMS-AE-based control system is analyzed by dividing it into Subsystem 1
and Subsystem 2, as shown in Fig. 3. If both subsystems are stable, so does the
entire closed-loop control system in Fig. 1.

4.1 Analysis and Design of Subsystem 1

For Subsystem 1, it consists of a Luenberger observer, an internal model, and a
state feedback controller.

Define

x̄(k) =
[
x̂(k)T , xr(k)

T
]T

. (16)

Combining (1), (3), (4), (5), and (6), the state-space representation of Sub-
system 1 is {

x̄(k + 1) = Āx̄(k) + B̄Lỹ(k) + B̄rr(k)
ȳ(k) = C̄x̄(k) + ỹ(k)

(17)

where
Ā = Ā0 + B̄K̄, Ā0 =

[
A 0

−BrC Ar

]
, B̄ =

[
B
0

]
, K̄ =

[
Kp Kr

]
B̄L =

[
L

−Br

]
, B̄r =

[
0
Br

]
, C̄ =

[
C 0

]
.

(18)

Further, we have the following result about the stability.

Theorem 1. For bounded ỹ(k) and r(k), if Ā of (17) is stable, then Subsystem
1 is stable.
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4.2 Analysis and Design of Subsystem 2

For Subsystem 2 in Fig. 3, it consists of an error state system (9) and an LMS-
AE.

When AL (8) is designed to be stable, which can be done similar to the design
of Ā, the state error system is stable. For the output ỹ(k) of Subsystem 2, it can
be expanded in the following form [19]

ỹ(k) =b1ỹ(k − 1) + b2ỹ(k − 2) + · · · bny ỹ(k − ny)

+ v0d(k) + v1d(k − 1) + · · ·+ vnd
d(k − nd)

− a0d̂e(k)− a1d̂e(k − 1)− · · · − anh
d̂e(k − nh),

(19)

where ny, nd, and nh are structural parameters, and b1, · · · , bny
, v0, · · · , vnd

, and
a0, · · · , anh

are the coefficients.

Theorem 2. If AL is designed to be stable, a0 = − ∂ỹ

∂d̂e
(k) > 0, and the step

size µ satisfies

0 < µ < min

{
2

a0
∑m

i=0 d
2
ni(k)

,
2

λdn
max

}
(20)

then the following statements hold.
1) Subsystem 2 is asymptotically stable for d(k) = 0.
2) The output error ỹ(k) eventually converges to a bounded neighborhood

for any bounded disturbance d(k).

Proof. Set a Lyapunov functional candidate as

V (k) =
1

2
ỹ2(k) (21)

Define ∆ỹ(k) = ỹ(k + 1) − ỹ(k). Using Taylor series expansion, we have the
following approximation:

∆ỹ(k) ≈
m∑
i=0

∂ỹ

∂wi
(k)∆wi(k) +

∂ỹ

∂d
(k)∆d(k). (22)

where
∂ỹ

∂wi
(k) =

∂ỹ

∂d̂e
(k)

∂d̂e
∂wi

(k) = −a0dni(k),
∂ỹ

∂d
(k) = v0. (23)

According to (14), we can obtain

∆wi(k) = wi(k + 1)− wi(k) = µdni(k)ỹ(k). (24)

Combining (22), (23), and (24), ∆ỹ(k) can be expressed as

∆ỹ(k) = −ỹ(k)h1(k) + h2(k) (25)

where h1(k) = µa0
∑m

i=0[dni(k)]
2 > 0 and h2(k) = v0∆d(k). Both of them are

bounded for any time step k when dni are bound and Assumption 2 holds.
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With (25), the difference of Lyapunuov candidate (21) becomes

∆V (k) =
1

2
∆ỹ(k)[2ỹ(k) +∆ỹ(k)]

=[−ỹ(k)h1(k) + h2(k)]ỹ(k) +
1

2
[−ỹ(k)h1(k) + h2(k)]

2

=− ỹ2(k)h1(k)[1− h1(k)] + ỹ(k)h2(k)[1− h1(k)] +
1

2
h2
2(k)

(26)

For the case d(k) = 0, h2(k) = 0. The difference (26) of the Lyapunuov
candidate reduces to ∆V (k) = −ỹ2(k)[1− 1

2h1(k)], which is negative so long as
µ is selected by (20). By LaSalle invariance principle, the state converge to the
hyperplane V (k) ≡ 0. Then, ỹ(k) ≡ 0 follows from (21). Therefore, Subsystem
2 is asymptotically stable.

For the case d(k) ̸= 0, we see how the error ỹ is bounded by the above
stabilization process. It is easy to see that (26) is a convex quadratic function of
ỹ(k). So, when solutions exists, we can obtain roots as

p1(k) =
h2(k)

h1(k)
, p2(k) =

h2(k)

h1(k)− 2
(27)

where they are both bounded for any k. According to (26), if ∆V (k) < 0, the
following condition must be satisfied

|ỹ(k)| > max
k

{|p1(k)|, |p2(k)|} := β. (28)

Obviously, ỹ(k) will converge to the set {ỹ(k) : |ỹ(k)| ≤ β}.

4.3 Inputs design for the LMS-AE

In the time domain, for a frequency component di(t) = Ai sin(2πfit+φi) of the
disturbance d(t)

di(t) =Ai cos(φi) sin(ωit) +Ai sin(φi) cos(ωit). (29)

The inputs of LMS-AE for fi can be extended to following forms from dni:

dni1(t) = sin(ωit) = sin(2πfit), dni2(t) = cos(ωit) = cos(2πfit). (30)

On the other hand, by (10), in addition to the harmonic components, there
may also be a DC component. So, it makes sense there is a constant input dn0
= 1 to the LMS-AE. When the inputs of the LMS-AE are changed, then the
asymptotic stability condition for Subsystem 2 is changed to

0 < µ < min

{
2

a0
∑m

i=1(d
2
ni1(k) + d2ni2(k)) + a0

,
2

λdn
max

}
(31)

where the inputs dn of the LMS-AE are also changed as dn = [dn0, dn11, dn12 · · · ,
dnm1, dnm2]

T .
Design algorithm of LMS-AE-based control system:
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Step 1 Select the appropriate (Ar, Br) based on the reference inputs to the sys-
tem.

Step 2 Design suitable L and (Kp,Kr) that make AL and Ā stable, respectively.

Step 3 When the absolute value of ỹ(k) is greater than set threshold Th, ỹ(k)
sampled in period Tm is analyzed and the frequency characteristics of the
disturbance is obtained.

Step 4 Determine the filter inputs (dni1, dni2) based on the information obtained
in Step 3.

Step 5 Choose a initial value for the weights wi for the first time, and get a
proper value of µ for the estimator. Then start or continue iteration and
adjust the weights by the updated law given in (31). Go to Step 3.

Remark 2. In Step 3, assume that the maximum period of disturbance is less
than Tm, and Th should be suitable.

5 Simulations and Analysis

In this section, a numerical example and a comparison with other method are
used to validate the developed method.

In continuous-time domain, the state-space model of system is

A =

[
1 0
−1 −1

]
, B =

[
1
0

]
, C =

[
1 0

]
, Bd =

[
1
1.2

]
. (32)

The reference input to the system is

r(t) = 20, (0 ≤ t ≤ 35 s), (33)

and the disturbance d(t) is sum of two periodic disturbances:

d1(t) =

40(|t− 6.25| − 0.25), (6 s ≤ t ≤ 6.5 s)
−40(|t− 6.75| − 0.25), (6.5 s ≤ t ≤ 7 s)
d1(t)(t− 1), (7 s ≤ t ≤ 20 s)

d2(t) =|10 sin(4πt)|+ 10 sin(4πt), (20 s ≤ t ≤ 35 s),

(34)

where the d1(t) is a triangular wave of magnitude 10 with a frequency of 1.0 Hz.

Under sampling with Ts = 5 ms, the discrete state-space modle is

A =

[
1.000 0.005
−0.005 0.995

]
, B =

[
0.005
0

]
, C =

[
1 0

]
, Bd =

[
0.005
0.006

]
. (35)

According to (36), the proper (Ar, Br) of the internal model are

Ar = 1, Br = 0.005. (36)
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Then, the suitable L and (Kp,Kr) are attained by discrete-time LQR method
which make AL and Ā stable. The weight matrices of discrete-time LQR method
are given as

QL = diag{200, 200}, RL = 0.005, QK = diag{20, 1, 20}, RK = 1, (37)

which obtain

L =
[
0.6201 0.2476

]T
, Kp =

[
−5.1789 −0.8150

]
, Kr = 4.4141. (38)

And Tm and Th are chosed as

Th = 0.1, Tm = 3 s. (39)

Table 1. The frequencies of LMS-AE inputs over time tables.

Time f1 f2 f3 f4 f5 f6
9-21 s 0.98 Hz 1.17 Hz 0.78 Hz 1.56 Hz 3.13 Hz 1.76 Hz
21-24 s 0.98 Hz 0.20 Hz 1.75 Hz 1.36 Hz 1.17 Hz 0.40 Hz
24-35 s 0.20 Hz 1.95 Hz 2.15 Hz 3.90 Hz 1.75 Hz 4.10 Hz

The simulation results in Fig. 4 denoted that the system was asymptotically
stable, had superior disturbance rejection performance, and Table. 1 which de-
noted that the frequencies (f1, f2, · · · , f6) of remaining filter inputs are updated
by periodic time. Moreover, the system also had an excellent tracking perfor-
mance due to the incorporation of the internal model. Although it took some
time to acquire frequencies at the beginning of a new disturbance, this cannot
hide its superior performance of disturbance rejection.

Finally, we compared the disturbance rejection performance of EID estimator
with LMS-AE, and designed filter F (z) (40) for the EID estimator [8]

F (z) =
0.2727z + 0.2727

z − 0.4545
. (40)

The simulation results in the Fig. 4 showed that disturbance rejection perfor-
mance of LMS-AE was better than EID estimator.

6 Conclusion

An LMS-AE was designed to enhance the rejection performance of unknown pe-
riodic disturbances of control systems, which was based on the LMS algorithm
and the EID concept. Then, the updated law and the convergence condition
of weights for the LMS-AE were given. Moreover, by dividing the closed-loop
system into two subsystems, stability conditions for the closed-loop system were
obtained. Finally, the case study showed that the LMS-AE had superior perfor-
mance.
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