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Abstract. This article, integrating the singular perturbation technique with
inverse reinforcement learning, proposes a novel linear two time scale system
tracking control method grounded in off-policy inverse reinforcement learning.
This method addresses the challenge of unknown cost functions prevalent in
industrial processes. First, the singular perturbation method is leveraged to
decompose the original problem into fast and slow subsystem issues. Without
manually designing a cost function, the method learns from known optimal
behavioral data by reconstructing cost functions tailored to each subsystem,
enabling the system to mimic optimal behaviors. Then, for the fast time scale
system, a model-based inverse reinforcement learning method is adopted, while
for the slow time scale system, a model-free off-policy inverse reinforcement
learning strategy is employed, which reconstructs the system's cost function
solely using measured expert behavioral data inputs. Finally, using a mixed
separation thickening industrial process to illustrate the effectiveness of this
method in two time scale tracking.

Keywords: Two Time Scale, Tracking Control, Inverse Reinforcement
Learning.

1 Introduction

It is well known that the control loops and manipulated variables of industrial
equipment have different operation speeds and interact with each other. The mixed
separation thickening process is a typical industrial process with two different time
scales, where exist two different time scales. The fast process is slurry pump, the unit
device, while the underflow concentration of the slow process is the operation index
[1]. In order to ensure the stability and reliability of the equipment, this interaction
must be considered in the design process. Usually, the singular perturbation method
[2] is used to deal with the interaction of system with different operation speeds. This
method establishes a singular perturbation system model by introducing a smaller
time scale to describe the difference between the fast and slow modes in the system,
so as to accurately describe the two time scale dynamic behavior of the process. Due
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to the high complexity and mechanism uncertainty of industrial process, accurate
modeling is a difficult problem. [1] combined reinforcement learning with the
singular perturbation method to develop a data-driven Q-learning singular
perturbation technology to control the output of the two time scale industrial process
to track the operational index. However, this method does not take into account the
influence of probing noise on the incentive system. For eliminating the influence of
probing noise, off-policy reinforcement learning [3] is proposed. [4] used off-policy
reinforcement learning with the singular perturbation method to achieve tracking
control of two time scale industrial processes. However, the performance index, also
known as cost function, of these methods need to be given in advance.

In complex industrial processes, it is subjective and difficult to set the cost function
artificially. Therefore, [5] proposed an inverse reinforcement learning (IRL) method
to reconstruct the unknown reward function by using a set of optimal behavior data
demonstrated by experts, so as to imitate the optimal behavior [6]. However, IRL
cannot guarantee the stability of the learning process [7]. In addition, the inverse
optimal control (IOC) proposed by Kalman [8] has a similar idea to IRL, but IOC is
Model-based [9, 10] and requires that the demonstration data used be stable points
rather than optimal points. In order to ensure the stability of IRL, [7] solves the IOC
problem as a sub-problem of IRL. On this basis, [11-15] have continued to study, of
which [11, 14] use off-policy IRL. However, these methods all operate on single-scale
systems.

Inspired by [1, 7, 11, 14], this paper aims to solve the tracking control problem of
two time scale industrial process by reconstructing the cost function using IRL
without complete knowledge of cost function knowledge, and to imitate optimal
behavior data. The main contributions are as follows:

1.The singular perturbation method is combined with IRL to reconstruct a cost
function for the tracking control problem of two time scale industrial processes. By
using the reconstructed cost function, a near-optimal controller is learned to imitate
the known optimal behavior data.

2.Unlike existing literature which use reinforcement learning, this paper develops
an IRL method for two time scale tracking control, which does not require artificially
designing a cost function for the two time scale industrial processes.

3.A decentralized composite IRL control scheme is designed, a model-based IRL is
designed for the fast time scale system, and the system cost function is reconstructed
using system model. A model-free off-policy IRL is designed for the slow time scale
system, and the cost function is reconstructed using only behavior data.

In Section 2, the objective of the two time scale IRL tracking control problem is
formulated. In Section 3, a decentralized composite IRL control scheme is proposed
to design the two time scale partially unknown systems. The scheme consists of a
model-based IRL design for the fast time scale system and a model-free off-policy
IRL design for the slow time scale system. Simulation results are shown in Section 4.



3

2 Problem Formulation

Consider the following singularly perturbed system model of a two time scale
industrial process:

εy�(t) = A1εy(t) + B1u∗(t) (1)

x�(t) = A2x(t) + B2εy(t)
r(t) = Cx(t) (2)

where (1) is the fast process of the control loop of the device, and (2) is the slow
process of the operation process. εy(t) ∈ ℝ ny is the state vector of the control loop,
the time scale constant ε ∈ (0,1) is known. u∗(t) ∈ ℝ nu is the optimal control input.
x(t) ∈ ℝ nx is the state vector of the operation process. r(t) ∈ ℝ nr is the operation
index. A1, A2, B1, B2and C are matrices of appropriate dimensions. Because there is a
fast and slow coupling between (1) and (2), a time scale decomposition is performed
on (1) and (2), let u∗(t) = u�∗(t) + u�∗(t) , y(t) = y�(t) + y�(t) , where u�(t) and y�(t)
represent the slow components of u∗(t) and y(t) , respectively, u�∗(t) and y�(t)
represent their fast components.

Note that the dynamical models of device, typically actuator, is straightforward to
identify in practice. Nevertheless, the operational process frequently encompasses
intricate reactions, characterized by unknown mechanisms and uncertainties.
Consequently, the precise model for the operational process is hardly to establish[16].
So there have following assumption.

Assumption 1: A1 , B1 are known. And A1 is a invertible matrix. A2 , B2 are
unknown. ( A1, B1), ( A2, B2) is controllable, and (A2, C) is observable.

When ε = 0

y�(t) =− (A1ε)−1B1u�∗(t)) (3)

Remark 1: According to [17], when the fast and slow subsystems are stable, y(t) =
y�(t) + y�(t) + 0(ε) , x(t) = x�(t) + 0(ε) , r(t) = r�(t) + 0(ε) . Where x�(t) is the slow
component of x(t), r�(t) is the slow component of r(t).

Using the singular perturbation method like [1], (1) and (2) are discretized and
decomposed into fast subsystem (4) and slow subsystem (5):

y�(k + 1) = Mfy�(k) + Nfu�∗(k) (4)

x�(k) = Msx�(k) + Nsu�∗(k)
r�(k) = Cx�(k) (5)

where Mf = eA1εT , Nf = 0
T eA1εTB1dt� , Ms = eA2T , Ns =− 0

T eA2TB2A1
−1B1dt� . The

sampling period of the fast process (1) is ∆tf = εT , the sampling period of the slow
process (2) is ∆ts = T.
Define the desired operation index trajectory as

r∗(k + 1) = Fr∗(k) (6)
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where F is a constant matrix with appropriate dimensions.
For the original global system (1) and (2), the performance index is defined as

J = min
u(i) i=k

∞ γ[(r(i) − r∗(i))T Q1
∗(r(i) − r∗(i))�

+ (y(i) − y�(i))TQ2
∗(y(i) − y�(i)) + u∗(i)TR∗u∗(i)] (7)

where the discount factor γ ∈ (0,1) reflects the rate at which the system performance
decays over time. Due to the presence of the discount factor, the matrix F is not
assumed to be Hurwitz, which means that the reference trajectory does not have to
tend to zero. Without discount factor, the cost function may be unbounded when the
reference trajectory does not tend to zero. Q1

∗ , Q2
∗ and R∗ are positive definite matrices.

y(i) − y�(i) is used to represent the high-frequency transients of the device control
loop.
Assumption 2: In (7), (Q1

∗ , Q2
∗ , R∗) are unknown, but is full rank. And the optimal

behavior data(x(k), u∗(k), εy(k)) are known.
Problem 1: Considering Assumption 1 and Assumption 2, for any R ∈ ℝm×m > 0,

reconstruct the performance index of the two time scale systems so that the system
behavior data imitates the optimal behavior data.
The performance index of the original global system can be decomposed into the

performance indices (8) and (9) of the slow and fast subsystems, and their
equivalence can be found in [1].

i=k
∞ γ[y�(i)T Q2

∗y�(i) + u�∗(i)TR∗u�∗(i)]� (8)

i=k
∞ γ[(r�(i) − r∗(i))T Q1

∗(r�(i) − r∗(i)) + u�∗(i)TR∗u�∗(i)]� (9)

Rewrite slow subsystem (5) into an augmented form

X�(k + 1) = MX�(k) + Nu�∗(k) (10)

where X�(k) =
x�(k)
r∗(k) , M = Ms 0

0 F , N = Ns
0 . Substitute (10) into (9), the

performance index of the slow subsystem is

i=k
∞ γ[X�(k)T Q∗X�(k) + u�∗(i)TR∗u�∗(i)]� (11)

where Q∗ = C −I TQ1
∗ C −I T. According to the necessary conditions for optimal

control, the optimal control u∗(k) = u�∗(k) + u�∗(k) =− Kf
∗y�(k) − Ks

∗X�(k)

Kf
∗ = γ(R∗ + γNf

TPf
∗Nf)−1Nf

TPf
∗Mf (12)

Ks
∗ = γ(R∗ + γNTPs

∗N)−1NTPs
∗M (13)

Pf
∗ and Ps

∗ satisfy the following algebraic Riccati equation

Pf
∗ = γMfPf

∗Mf + Q2
∗ − γ2Mf

TPf
∗Nf(R∗ + γNf

TPf
∗Nf)Nf

TPf
∗Mf (14)

Ps
∗ = γMTPs

∗M + Q∗ − γ2MTPs
∗N(R∗ + γNTPs

∗N)NTPs
∗M (15)
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Define 1: In (8) (Q2
∗ , R∗) can obtain the optimal Ks

∗ , and Pf
∗ satisfies (14). Given any

R ∈ ℝm×m > 0 , if there exists a Qf ∈ ℝn×n ≥ 0 such that ( Qf , R ) makes the
corresponding unique stable Pf ∈ ℝn×n ≥ 0 produce the same Kf

∗, then Qf is called the
equivalent weight of Q2

∗ , and similarly, Pf is equivalent weight of Pf
∗ . In this way, the

reconstruction cost function (8) is simplified to find an equivalent weight Qf for Q2
∗ .So

the reconstruction cost function (9) is simplified to find an equivalent weight Qs for
Q∗.

Therefore, Problem 1 is transformed into solving Problem 2 for the fast subsystem
(4) and solving Problem 3 for the slow subsystem (5).

Problem 2: Considering Assumption 1 and 2, using the system dynamics
knowledge and the optimal gain Kf

∗ , for any R ∈ ℝm×m > 0 , find an equivalent
weight Qf for the performance index (8) such that the fast system imitates the optimal
behavior data.

Problem 3: Considering Assumption 1 and 2, using only the optimal behavior data,
for any R ∈ ℝm×m > 0 , find an equivalent weight Qs for the performance index (9)
such that the slow system imitates the optimal behavior data Qs.

3 IRL Algorithm For Tow Time Scale system Tracking Control

To solve problems 2 and 3, Section 3.1 first proposes a model-based IRL algorithm
for the fast time scale system to find the equivalent weight Qf according to the known
Ku

∗ when the model is known. Then, Section 3.2 proposes an off-policy IRL algorithm
for the slow time scale system, which only uses the known behavior data (x(k), u∗(k),
εy(k)) to find the equivalent weight Qs.
3.1 Model-based IRL Algorithm Fast Time Scale System

This subsection proposes a model-based IRL algorithm for the fast time scale system
to solve problem 2.

Algorithm 1 finds the equivalent weight Qf using system dynamics (Mf , Nf ) and
optimal control gain Kf

∗ . Since (14) has unknown parameters Pf
∗ and Q2

∗ , it is difficult
to solve directly, so the policy iteration method is used to solve it. In each iteration i,

Algorithm 1: Model-based IRL Iteration Algorithm
Step 1: Initialization. Let i = 0, where i is the iteration step length. For any R, Qf

0 = 0 ∈
ℝn×n. Given the initial gain Kf

0, α ∈ [0,1] tuning parameter.
Step 2: Policy evaluation. Evaluate Pf

i by solving (16)
Pf

i = γ(Mf − NfKf
i)TPf

i(Mf − NfKf
i) + Qf

i + Kf
iTRKf

i + α(Kf
i − Kf

∗)TR(Kf
i − Kf

∗) (16)
Step 3:Inverse optimal control. Update Qf

i+1 by (17)
Qf

i+1 = Pf
i − γ(Mf − NfKu

i )TPf
i(Mf − NfKu

i ) − Kf
iTRKf

i (17)
Step 4: Policy improvement. Update the gains Kf

i according to (18)
Kf

i =− γ(R + γNf
TPf

iNf)−1 Nf
TPf

iMf (18)
Step 5: u� i(k) = Kf

iy�(k). Set i = i + 1, and go to Step 2. Stop when for any small normal
number σ1, ||Kf

∗ − Kf
i|| < σ1.
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i = 0,1. . ., Pf
i is calculated. α ∈ [0,1] is a tuning parameter to ensure the convergence

of (16). Qf
i+1 is obtained by inverse optimal control (17) and Kf

i is obtained by optimal
control (18) using P calculated by (16).
Remark 2 : [6, 11, 18] It has been proved that Algorithm 1 terminates after a finite

number of iterations and can obtain a unique equivalent weight Qf of Q2
∗ . Pf

i converges
to Pf

∗ , Kf
i converges to Kf

∗ . Kf
i can stabilize the system (4). This paper only adds a

discount factor γ on its basis, so u� i(k) converges to u�∗(k).
As mentioned in [11, 12, 18-19], the IOC problem usually has non-unique

solutions, and Corollary 1 shows the non-uniqueness of Algorithm 1.
Lemma 1 (Non-uniqueness): Suppose Algorithm 1 converges to Qf1, Qf1 satisfying

Qf1 = P1 − γMf
TP1Mf + γMf

TP1NfKf
∗ (19)

where P1 satisfying

γNf
TPf

∗Mf = (R∗ + γNf
TPf

∗Nf)Kf
∗ (20)

Proof: The proof is similar to Theorem 4 in [13], except that there is a discount factor
here.
Algorithm 1 requires complete knowledge of system dynamics to solve. Section 3.2

designs an off-policy IRL algorithm that does not require knowledge of system
dynamics for the slow time scale system, as shown in Algorithm 2.
3.2 Model-free Off-policy IRL Algorithm For Slow Subsystem

Algorithm 1 requires complete knowledge of system dynamics to solve (16-18). In
this subsection, an off-policy IRL Algorithm 2 is proposed for the slow time scale
system without requiring knowledge of system dynamics, which finds the equivalent
weight Qs only using the known behavior data (x(k), u∗(k), y(k)) to solve problem 3.
Since x�(k) is unmeasurable, if M − NKs

i is Hurwitz, there exists ε∗ ≥ 0 such that
for any ε ∈ (0, ε∗) , X(k) = X�(k) + 0(ε)holds for k ≥ 0 [1]. There is the following

approximation relationship: x�(k) approximates x(k), so X(k) = x(k)
r∗(k) can be used to

replace X�(k) =
x�(k)
r∗(k) .

Substituting the slow time scale dynamics (M ,N) and (13) into (16), multiplying
both sides by X(k)T and X(k), and replacing with the model-free data-driven equation,
get

X(k)TPs
i X(k) = γX(k)T(M − NKs

i )TPs
i (M − NKs

i )X(k)

+ X(k)T(Qs
i + Ks

i TRKs
i + α(Ks

i − Ks
∗)TR(Ks

i − Ks
∗))X(k) (21)

Rewrite the augmented system equation (10) as

X(k + 1) = MiX(k) + N(u�∗(k) − Ks
i X(k)) (22)

where Mi = M + NKs
i , u� i(k) = Ks

i X(k) is the target policy being updated. u�∗(k) is the
behavior policy actually applied to the system. u�∗(k) cannot be directly measured, but
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since u�∗(k) = u∗(k) − u�∗(k) = u∗(k) + Kf
∗y�(k) , substituting (3) and y�(k) =

ε−1εy(k) − y�(k) into u�∗(k) yields

u�∗(k) = (1 − Kf
∗(A1ε)−1B1)−1(u∗(k) + ε−1Kf

∗εy(k)) (23)

Since u∗(k), y(k), Kf
∗, A1, ε and B1 are known, u�∗(k) can be obtained by combining

measurable variables. (21) can be rewritten as

X(k)TPs
i X(k) − γX(k)TMiTPs

i MiX(k) = X(k)TPs
i X(k)

−γ(X(k + 1) + N(u�∗(k) − u� i(k)))TPs
i (X(k + 1) + N(u�∗(k) − u� i(k)))

= X(k)T(Qs
i + Ku

i TRKu
i )X(k) + α(u�∗(k) − u� i(k))TR(u�∗(k) − u� i(k)) (24)

Expanding (24) and writing it in the form of Kronecker product, get

(X(k)T ⊗ X(k)T − γX(k + 1)T ⊗ X(k + 1)T)vech(Ps
i )

+2(u∗(k) − ui(k))T ⊗ X(k)Tvech(γNTPs
i M)

+ (u∗(k) − ui(k))T ⊗ (u∗(k) + ui(k))Tvech(γNTPs
i N)

= X(k)T(Qs
i + Ku

i TRKu
i )X(k) + α(u�∗(k) − u� i(k))TR(u�∗(k) − u� i(k)) (25)

Set
Γi = Γ1

i Γ2
i Γ3

i T, Γ1
i = vech(Ps

i )T, Γ2
i = vech(γNTPs

i M)T, Γ3
i = vech(γNTPs

i N),

ψi =
ψ1

1 ψ2
1 ψ3

1

⋮ ⋱ ⋮
ψ1

N1 ψ2
N1 ψ3

N1
, ψ1

N1 = (X(k)T ⊗ X(k)T − γX(k + 1)T ⊗ X(k + 1)T),

ψ2
N1 = 2(u�∗(k) − u� i(k))T ⊗ X(k)T, ψ3

N1 = (u�∗(k) − u� i(k))T ⊗ (u�∗(k) + u� i(k))T,
ρi = [ρ1

i ⋯⋯ρN
i ]T, ρN

i = X(k + N − 1)TQs
i X(k + N − 1) + u� i(k + N − 1)TRu� i(k +

N − 1) + α(u� i(k + N − 1) − u�∗(k + N − 1))TR(u� i(k + N − 1) − u�∗(k + N − 1)).
Therefore, the Bellman equation of off-policy IRL can be written as

ψiΓi = ρ1
i ⋯ ρN1

i (26)

The control gain Ks
i can be designed as

Ks
i =− (R + Γ3

i )−1 Γ2
i (27)

Since Γi is a symmetric matrix with n = (nx + nr)(nx + nr + 1)/2 + nu(nu + 1)/
2 + (nx + nr)nu independent elements. Therefore, at least N ≥ n data sets are
required to use the least square method to solve (26). The solution of (22) is Γi =
(ψiTψi)−1ψiT ρ1

i ⋯ ρN1
i . In order to ensure ψiTψi invertibility, the data set must

satisfy the persistent excitation condition (PE). Add exploration noise e1(k) to the
control input, let u� i(k) + e1(k) replace u� i(k) in (26).
Substitute (13), (16), and slow time scale dynamics (M,N) into (17), multiply both

sides by and , and replace with the model-free data-driven equation



8

X(k)TQs
i+1X(k) = X(k)TQs

i X(k) + α(u�∗(k) − u� i(k))TR(u�∗(k) − u� i(k))) (28)

where θi = [θ1
i ⋯⋯θq

i ]T , ϑi = [ϑ1
i ⋯⋯ϑN

i ]T , θN
i = X(k + N − 1)T ⊗ X(k + N − 1)T ,

ϑi = X(k)T(Qs
i + α(Ku

i − Ku
∗)TR(Ku

i − Ku
∗))X(k). Since Qs

i is a symmetric matrix with
n1 = (nx + nr)(nx + nr + 1)/2 independent elements. Therefore, at least N1 ≥ n1
data sets are required to use the least square method to solve (29). Since n1 < n, the
whole algorithm needs to collect N ≥ n data sets.
So far, the model-free off-policy IRL algorithm for the slow time scale system is
shown in Algorithm 2.

Algorithm 2: Model-free Off-policy IRL Algorithm
Step 1: Initialization. Let i = 0, where i is the iteration step length. For any R, Qs

0 = 0 ∈
ℝn×n. α ∈ [0,1] tuning parameter.
Step 2:Data collection. Collect N ≥ n groups data {X(k)} {u∗(k)} {y(k)} and add the
detection noise e1(k) to form ψi and ρ1

i ⋯ ρN1
i in (26).

Step 3: Policy evaluation. Evaluate Ps
i by solving (26)

Step 4:Inverse optimal control. Update Qs
i+1 by (28)

Step 5: Policy improvement. Update the gains Ks
i according to (27)

Step 6: u� i(k) = Ks
i X(k). Set i = i + 1, and go to Step 2. Stop when for any small normal

number σ1, ||Ks
∗ − Ks

i || < σ1.
Theorem 1 (Convergence): Algorithm 2 can obtain the unique equivalent weight Qs ,
Ks

i converges to the optimal solution Ks
∗ given in (13), and therefore u� i(k) converges

to u�∗(k).
Proof: Since (28) is obtained by substituting (16) into (17) and multiplying both

sides by X(k)T and X(k) . Because of the existence of the tracking desired operation
index error, X(k) ≠ 0 , (28) is equivalent to (17) . Therefore, the inverse optimal
control step of Algorithm 1 is equivalent to that of Algorithm 2. [20] proved that the
remaining parts of Algorithm 1 are equivalent to the remaining parts of Algorithm 2.
Therefore, Algorithm 2 is equivalent to Algorithm 1. So, Algorithm 2 can obtain the
unique equivalent weight Qs , Ks

i converges to the optimal solution Ks
∗ given in (13),

and therefore u� i(k) converges to u�∗(k).
Lemma 2 (Stability): Algorithm 2 yields control inputs that stabilize the closed-

loop system.
Proof: Since Algorithm 2 is equivalent to Algorithm 1, and Algorithm 1's control

strategy stabilizes the system, it follows that the control inputs obtained from
Algorithm 2 also stabilize the system.
Lemma 3 (Unbiasedness): The exploration noise will not cause bias in the

estimation of Γi, Qs
i+1, Ks

i in algorithm 2.
Proof: [11] proved that the off-policy IRL algorithm can eliminate the influence of
exploration noise, so the estimation of Γi , Qs

i+1 , Ks
i will not produce bias. Here, only

discount factor is added.
3.3 Composite Control and Performance Analysis

Based on the singular perturbation optimal control [21], the decentralized composite
control input can be constructed as
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ui(k) = u� i(k) + u� i(k) = Ks
i X�(k) + Kf

iy�(k) (30)

In order to implement the controller (30) by measured data directly from global
system, get

ui(k) = Ks
i X(k) + Kf

i(y(k) − (A1ε)−1B1Ks
i X(k))

= (Ks
i − (A1ε)−1B1Kf

iKs
i )X(k) + ε−1Kf

iεy(k) (31)

Lemma 4: The control strategy ui(k) obtained by the algorithm converges to the
optimal optimal control strategy u∗(k) , that is, lim

i→∞
ui(k) = u∗(k) . In addition, the

original global system (1), (2) is asymptotically stable under lim
i→∞

ui(k).
Proof: Lemma 2 in [1] proved that when u� i(k) converges to u�∗(k) and u� i(k)

converges to u�∗(k), ui(k) converges to u∗(k). The optimal strategy u∗(k) can make
the original global system (1), (2) asymptotically stable, so in the original global
system (1), (2) is asymptotically stable under lim

i→∞
ui(k).

Lemma 5: The control strategy ui(k) is a 0(ε) approximate optimal solution to the
problem 1, the tracking error r(k) − r∗(k) and y(k) − y�(k) are stable.
Proof:According to [22]

Ks
∗ − Ks

i ≤ 0(ε) ≤ dε (32)

Then

u∗(k) − lim
i→∞

ui(k) = || − (Ks
i −A1

−1B1Ks
∗)X(k)

−(Ks
i −A1

−1B1Ks
i )X�(k)|| ≤ eε (33)

where e = d I−A1
−1B1 ( X�(k) + Ks

∗ − Ks
i ) , therefore, u∗(k) = lim

i→∞
ui(k) + 0(ε)

can be obtained. According to Lemma 3 in [1], the tracking error r(k) − r∗(k) =
r�(k) − r∗(k) + 0(ε) and y(k) − y�(k) = 0(ε) are convergent.

4 Simulation Results

For a typical industrial process object, the mixed separation thickening process is
described in detail [1]. Taking the linearized model given in [1] as an example, the
effectiveness of the proposed method is verified.

εy�(t) =− 0.68εy(t) + 2.6u(t)
r�(t) =− 0.057r(t) + 0.055εy(t)

r(t) = x(t)
(34)

In order to obtain satisfactory concentrate grade and tail grade, the underflow
concentration r(t), underflow slurry flow rate εy(t), and its high-frequency transients
ε(y − y�) are controlled within the target range. The time scale constant ε = 0.1. The
desired underflow concentration value should be set by r∗(k) = 33. Select parameters
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Q1
∗ =100, R∗ = 0.1 , Q2

∗ =2.5, T = 0.1 , Q∗ = 100 −100
−100 100 . The optimal optimal

fast control strategy gain is Kf
∗ = 2.6150 . The optimal optimal slow control

strategy gain is Ks
∗ = 21.0018 −21.2432 , initial value r(0) = 32.2 , y(0) =1,

generate optimal behavior data ( r(k), u∗(k), y(k)).
In the case of unknown parameters ( Q1

∗ , Q2
∗ , R∗) , unknown system dynamics in

(34), and unknown Ks
∗ , measurement noise e1(k) ∈ [ − 0.01 0.01] , α = 0.7 , σ1 =

0.02, σ2 = 0.1, Qf
0 =0, Qs

0 = 0 0
0 0 , choosing R = 0.1. According to the optimal

behavior data ( r(k) , u∗(k) , y(k) ), use inverse reinforcement learning to find
equivalent weights, get Qf = 2.5274 , Qs = 108.4668 −108.5642

−108.5642 108.6620 , the
corresponding learned control gains are Kf = 2.4575 , Ks =
20.9904 −21.2318 .

Fig. 1. The convergence process of Kf.

Fig. 2. The convergence process of Ks.
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Fig. 3. The convergence process of Qf.

Fig. 4. The convergence process of Qs.

Fig. 5. Imitates performance of system output r(k).
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Fig. 6. Imitates performance of control u∗(k).

Fig. 7. Imitates performance of flow rate εy(k).

Fig. 8. Flow rate changing of flow rate εy(k).

Fig. 1-2 shows the convergence process of Kf and Ks by the proposed method. Fig. 3-
4 shows the convergence process of equivalent weight Qf and Qs . Fig. 5-7 show that
the system output (r�(k), u�(k), y�(k)) imitates the optimal behavior effect (r(k), u∗(k),
y(k)), and the system output can track the desired operation index. Fig 8 shows the
transient value of the underflow slurry flow rate converges to zero, and the final
output reaches a quasi-steady state.
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5 Conclusion

This paper studies the IRL problem of two time scale and proposes a tracking control
method based on off-policy IRL. The method combines the singular perturbation
method with IRL to reconstruct a cost function for the tracking control problem of the
two time scale industrial process. Through the reconstructed cost function, an
approximate optimal controller is learned to imitate the known optimal behavior data
without the need for manual design of the cost function. The method designs a
decentralized composite IRL control schemes: For the fast time scale system, a
model-based IRL method is used for design; For the slow time scale system, a model-
free off-policy IRL method is used, which only use the measured optimal behavior
data to reconstruct the system cost function. Simulation experiments verified the
imitation performance of the proposed method in two time scale systems. Although
this method has shown excellent performance, it still needs to be further explored and
overcome some limitations, especially the influence of noise interference and
dynamic changes of the system, which cannot be ignored. Looking ahead, future work
will focus on addressing stochastic perturbations that are common in real industrial
environments, and work to extend this method to more complex system applications
to further enhance its practicality and adaptability.
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