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Abstract. In this paper, the consensus control problem of high order nonlinear
multi-agent systems with non-affine faults, unmeasurable states, uncertain con-
trol coefficients and external disturbances is studied. Under the directed topology
conditions, an observer-based finite-time control method based on adaptive back-
stepping is proposed. A state observer based on neural network is introduced to
estimate the unmeasurable system state variables. In order to solve the “explosion
of complexity” problem of backstepping method, a finite time command filter is
introduced, and error compensation signals are designed to compensate the filter
error. The Butterworth low-pass filter is used to avoid the algebraic ring problem
in the control law. The finite-time stability criterion and Lyapunov stability the-
orem are utilized to analyze that all signals of the closed-loop system are bounded
in finite time. Finally, the effectiveness of the presented control strategy is illus-
trated by a simulation example.
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1 Introduction

In the past few decades, as the foundation of cooperation and coordination among
agents, the consensus problem has received extensive attention in the research of multi-
agent systems (MASs) [}, Consensus control within the leader-following framework
is a typical research direction™, which aims to achieve state consensus among agents
under the condition that only part of agents can directly access the leader’s signal or
reference signal.

In the design of consensus control protocols for nonlinear MASs, adaptive backstep-
ping is a commonly used method>-4l. It systematizes structures the process of Lyapunov
function and controller design through recursive design. However, the derivative of the
previous step is required in each step of the backstepping method, which lead to an



increase in computational complexity with the order of the system. By merging the

command filter approach, the “explosion of complexity” problem can be solved.

In the consensus control problem, convergence rate is generally considered to be an
important factor. But many study on consensus control in existing literatures are based
on asymptotic stability’-®], which ensures system stability only as time tends to infinity.
In contrast, finite-time control protocols can provide faster convergence rate, higher
tracking accuracy, and better performancel®-!2.

In practical systems, the system state variables are usually partial measurable. In
such cases, methods based on the full observability of agent states and state feedback
cannot be applied. A feasible approach is to design a state observer to estimate the
unknown part of the system state. For systems with nonlinear terms, a state observer
based on neural network is effectivel'>'!3]. Besides, the control coefficients are often
uncertain in practical, which may affect the effect of the control protocoll>!¢l,

In addition, due to the large scale and high complexity of MASs, some faults are
prone to occur during the operation of real systems, which may lead to a decline in
control performance or even cause the system to fail directly. Therefore, to ensure the
long-term stable operation of the system, it is crucial to consider the fault tolerance of
the system in the design of control protocoll'*!8, Most of the above literatures consider
linear fault models, which may not reflect the nonlinear fault characteristics of complex
systems well, while non-affine fault models can present a wider range of fault condi-
tions in practical applications more accurately!!>!°-201,

Motivated by the above observations, a finite-time fault tolerance control scheme
based on neural observer is presented for nonlinear MASs with non-affine faults and
uncertain control coefficients in this paper. The main contributions of this paper are
listed as follows.

1. An advanced observer-based finite-time adaptive tracking control algorithm, com-
bining adaptive backstepping control and radial basis function neural network
(RBFNN) , is proposed for uncertain nonlinear MASs subject to non-affine faults,
uncertain control coefficients and external disturbances under directed graphs.

2. In contrast to traditional linear fault model, the non-affine fault model in this paper
can reflect faults in practical systems more accurately. Besides, the uncertain control
coefficients considered in this paper is more practical in real systems than many
other existing literatures, whose control coefficients are regarded as known constant.

3. To address the “explosion of complexity” problem raised by backstepping method,
the command filter mechanism is introduced in this paper, and compensation signals
are established to compensate the filter error. In addition, a Butterworth low-pass
filter (BLPF) is utilized to solve the algebraic ring problem in the control law.

The remainder of this paper is organized as follows. In Section 2, the communication
graph, the considered system and faults model, some useful assumptions and lemmas
are introduced. Then, a neural observer and a corresponding observer-based finite-time
adaptive fault-tolerant control protocol is derived in Section 3. In Section 4, the stability



analysis is established. In Section 5, a simulation example is provided to illustrate the
effectiveness of our proposed scheme. Finally, a conclusion is drawn in Section 6.

2 Preliminaries and problem description

2.1  Graph theory

The information interaction topology between agents is described by a fixed directed
graph G=(V,€), where VE{l,...,N} is the vertex set and £<VxV indicates
the edge set. The edge (i,j)e& denotes that agent j can obtain information from
agent 7, but not necessarily vice versa. For the edge (i, j ) , 1 is the parent node and j is
the child node. The neighbors collection of agent ;j is represented as
N, ={i|G,j)e&. A=[a; ;1€ R™" represents the adjacency matrix, in which a;;
is a positive weight if and only if (j,i)e &, otherwise a;; =0 . The in-degree matrix
isrepresented as D, which is a diagonal matrix with diagonal elements d; =X, v.a; ;.
The Laplacian matrix is expressed as L =D — A4 . The leader adjacency matrix is
B =diagib,,...,b,}, in which b, =1 if and only if the node i can receive the leader’s
information, otherwise b, =0. If the directed graph G contains a directed spanning
tree, it indicates that there is at least one node with a directed path to all other nodes.
2.2 Problem description

In this paper, the MAS consisting of one leader and N followers is considered. The
i-th follower is modeled as

Xie = Xi 41
xi,n =P (t)ui +fi (xi)+ﬁi (t_TO)hi (xisui)+Ai (f) (1
Vi =Xy

where ¢=12,...,n-1. x; =[x,-,1,xl-,2,...,x,-,n ]T and y; are the system state vector
and output of the i-th follower, respectively. And only the output is measurable while
other states variables are not available. f;(x;) is an unknown nonlinear function.
A, (t) denotes the uncertain external disturbances. u; is the control signal with an
uncertain nonlinear control coefficient p, (7) satisfied 0< p, (1)< p,, where p; is
a positive constant. (x,-,u,-) stands for fault-induced unknown change and
B (t—T,) represents the time profile with the form

0 t<T,
(t—T,) = e
ﬁ( 0) {l_e 1ai(t=Tp) tZTb

where 7,; >0 and 7, indicate the fault evolution rate and unknown fault occurrence
time, respectively.

The control objective is to design a finite-time fault-tolerant control (FTC) scheme
to guarantee the desired tracking performance of system (1), and all signals in the
closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) in finite
time. To achieve such objective, some necessary preliminaries are listed as follow.



Assumption 1.[16] The directed graph G contains a spanning tree and the root node
n, can directly access the full information of reference signal y, (t), thatis b, =1.
Assumption 2.[16] The disturbance satisfies |A,- (t)| <A,, where Zi is an unknown
positive constant.

Assumption 3.[14] The partial derivative [(Jf;)/(Ox,,)] satisfies the inequality:

11",( <)/ (0xi0) < J_?f
where f;, and f;, are known constants.
Assump_tion 4.[15] The reference signal y, and its first-order derivative y, are con-
tinuous and bounded.

Assumption 5.[15] For S, (¢ —T,)h (x;,u;), the following inequality is satisfied
|ﬁz (f _%)hf (xisui )| < |é_’z (-xiaui)|
where g; (xl-,ul-) is an unknown function.

Lemma 1.[9] An extended Lyapunov description of finite-time stability can be given
with the form of ¥ (x)+ A4V (x)+ A4V (x)<0, and the settling time can be given by

1=y
T <t + 1 mAV (to)+ 4

a (1 -7 ) A
where 4, 4,, 0<y <1 are positive constants.
Lemma 2.[10] Consider the system x=f (x) , if there exist continuous function
V(x) and positive constants 4 , 4, , 0<y<l , 0<p<oo such that
V(x)< -4V (x)- AV’ (x)+7, then the trajectory of system is practical finite-time
stable, and

. . 1/y
{}LI?|V(X)| < mm{r]/(1—00)/1],(77/(1—6’0)/12) /}}
where 0< 6, <1 is a constant. The settling time is bounded as
1 OV (ty)+ Ao 1 AVW@@+%@}
In o+ In

O (1-7) 2 A7) O
Lemma 3.[15] Let S(z,) =[s1(Z,),....5.(Z, )]' be a basis function vector of RBFNN
with z, :[zl,...,zq]T. For any integer 0<p<g, S’ (Eq)S(Eq)S ST (EP)S(EP) .

Lemma 4.[15] There exist w>0 and ze R, such that
2

T < max{to +

|z|£w+
zt +w?

3 Design of observer and controller

For simplicity, we define some necessary symbols and parameters as follows: (5)
. . . * - ® A .
is the estimation of (¢) and (3)=(s) —(3). represents the Euclidean norm.
}/i,l s }/i,Z s Ti,l s Z-i,2 s Ti,3 s Ki,[ s Ci,[ s Wi,é s hi,l s ki.é’ s P ﬂ"i,l B qi,O ) qi,[ s by /’ll,i s
i, O, Oy, O3;, O4; arepositiveparametersfor i=1,...,N and ¢=1,...,n.




3.1 Neural observer design

For unmeasurable states in system (1), a neural observer is constructed as follows

Xig =Xion +1iy (J’[ - fff,l)
)éi,n =1, (J’i — X ) +u; + éiTS[ (Xt ) + 01,[‘//1,[ ()A(ia u:f ) T YW, (u:f )
oY A A T A . . .

where ¢=1,....,n—-1, X, = [x,-,l,x,-,z,...,x,-,,,] , X, is the estimation of x;,. [,
denotes the observer gain. 6,, 0,;, 0,; are adaptive parameter vector utilized to esti-
mate the unknown ideal RBFNN weight vector 6, , Ui, Ly, respectively.S;, v,
v, denotes basis function vectors. u/ ~u; is the filtered signal generated by a But-
terworth low-pass filter (BLPF) u/ = H/ (s)u, , whose parameters are shown in [21].

Design the estimation error vector e =[x, —%,...,X, — X, ]T =[e,.- e ]T )
From (1) and (2), the estimation error dynamics is represented as

é = Aei+ R(fi(x) = fi(X)+ £i(X) =07 (X)) + Bt =Ty (xi.w,)

2

A 5 f A f (3)
=091, (Xi,u) ) =0y, (u )+ A (2) + (o (1) = l)ui)
Where Ai = AO,i _LiCi ) AO,[ = |:g ]’70_1:| B Li = [li,ln"'ali,n]T > Ci = [170770] E
R =[0,...,0,1]",and 1, isthe n—1 order identity matrix.
The unknown nonlinear function f;(X;) is estimated by RBFNN as follows
f(&)=07s(X)+s, |6]<8 )

By differential mid-value theorem, one can obtain
fi(xi)_fi(Xi):Eei (%)
Where E = [05 E,Za crey E,n] ’ E,f = [(af;) / (agi,i)L gi,é € [xi,[ajei,é]’ 2 S £ S n. Further'
more, define J; = R,F; for the convenience of subsequent steps.
For the stability analysis of estimation error dynamics, construct a Lyapunov func-
tion candidate as V,; = e/ Pe, with P being a symmetric positive definite matrix to
be decided. By (3)-(5), the time derivative of V,, can be represented as

vV, =e (A,.TB +P,.A,.)e[ +2e,.TP,.R,.(Ee,- +0'S, ()?,-)+5,- + B (t=To ) by (xi,u;)
s (X! ) = 0o (] )4, (0)+ (01 (1) 1))

Applying Assumption 2, Assumption 5 and Young’s inequality, and utilizing
RBFNN to estimate unknown terms, one can obtain

(6)

I & 1,
A (1)< A; +—v; 7
i (t) 271%] i + 2 7/1,1 ( )
1 _ 1
B (t=T)h (x,u;) < W g’ (x,-,ul-)+57fz ®)
mzf + 257 g (xiaui) =0 Y (Xi,uif) + &1, |51,i| <&y ©)



(2 = 1) +%(7,%1 +75) = vsiy, (4l )+ 21, |62 < B (10)

From the property of RBFNN that S/S; <d;, with ds; being the dimension
number of S;, one can further obtain that

Ze[TH-R,- (é[TSi ()?[)“‘ 5,) < 2Ti,1eiTPiei +H(d5,iéiTéi + 52) (1 1)
Til
2e! PR, (ﬁkT,i‘//k,i + gk,i) < 2Ti,keiTHei + H(dy/k,iﬁlziﬁk,i + Ekz,i): k=12 (12)
Tik

where ds;, d,;, d,,, indicate the dimension of S;, y;, and ,,, respectively.
Substitute (7)-(12) into (6) yields

1

Vii<el (A'R+P4+21,P+PRJ,+J'P)e + H(afs,iéf ) +5;
Tia
: (13)
| (d,1.000, + &)+ 7 (dy 2000, + 551
T,-’z Ti,}

=

=l

+

where 7, =17, + 7,5 +7;;. From (13), the following matrix inequality needs to be sat-
isfied for the stability of the error dynamics

A'P+PA +2t,P+PJ, +J'P<0 (14)
From Assumption 3, there exists functions y,,(¢),(0< g, <1) such that
E, =Xl +(1_Zi,/)fi,é (15)

As a result, the element of matrix J; can be rewritten to the above form. Thus, by

the convex combination theory, (14) can be converted to
A'P+PA +2t.P+PB,+B'P<0 (16)

where B eQ,, Q, = {B,. (B = fie or fius2<t<n

Remark 1: By introducing N, = PL; and above steps, (14) can be simplified into
linear matrix inequality (LMI) form. Thus, L; can be obtained by solving the LMIs,
and the solvability of LMIs guarantees the stability of the error dynamics!'l.
3.2  Finite-time controller design

First, the coordinate transformation of the i-th follower is described below
Vii = Zau (vi=y;)+b(vi-»)
py 17)

Vie=Xiy—Cy, £=2,..,m
where Vv;;, v, represents the synchronization error and the error surface, respec-
tively. y, denotes the reference signal from the leader. »; indicates the set of neigh-
bornodes of i. a;; isthe communication topology parameter between node i and node
j. b indicates whether the reference signal is accessible for node i. &, is the output
signal of a finite-time command filter inspired by [22], which if defined as

W, = |05i,171 —Qy |p sgn (ai,H -y ) Qe — Oy

18
O_Iij (0) = (0) ( )



where @, and 0< p<1 are positive constants. The virtual control law «;,, 1is
the input of the command filter, and the output is ;.
The command filter will generate error &, — ;. , which will be eliminated by an
error compensation mechanism. The compensated tracking error is defined as
zig=viy—&y, L=1..,n (19)

where &, is the error compensation signal designed as follow and & ,(0)=0.
: _ 1
&= (di +b )(5)2 ta, -, ) —Ci1Gi) oo Kij Sgn(é,l)
ééi,z—é:w"‘azs —Cia&in ,2_(di+bi)§i,l_Ki,2sgn((;:i,2)

(20)
(ft,z :fi,m"'o_fi,m &d;—C téfé 921, 5:',1*71 —Kiy Sgn(é,z),£=3,-~,n—
: 3
é,é: = _ci,n in _Eé,n - é,nfl - Ki,n Sgn(gi,n)
where d; is the in-degree of the i-th follower.
The virtual control signals in the following steps are constructed as
*
Z 00y
Oy =——— (=10 (21)
\Y ZI%[aij + Wt%é‘
where
« 1 1 le¢AzWiT1(Zfl VV:I(ZI)
a;, = CiaVii +—=V;, a; X b,+h,22”1+ y .
1 di+b[ Wia 5 Vil JEZN JXj2 — 0y I ] 2(d1+b,~)k121
. 1 - _ Zin 7 = =
Aip =CipVip T Vi +(di +bi)V:,1 — 8y +hioz T+ i W5 (Zi.Z) f,z( i,z)
2 2ki, (22)
x 1 = =
Qi =Ci(Vig +5Vu:‘ Vi =+ hy, 4221) ! il (Zf,i‘)VVi,l (Zi,f)
* 3 2 l T 7
iy = CinVig T =Vip +Viy a!n+h1nz - Wi\ Zin Wi\ Zi
. nVin TS Vi -1 2k,2,1¢ ( ) .(( )

and 0<p<l1. g13, and W,, are RBFNN parameters defined in the following steps.
Step 1: Construct the Lyapunov function candidate as

1 1
Vi == 28+ —— 23
1=7 3 /Ll¢ (23)

The time derivative of V; is
Vi,l =2z (di +bi)( Zipten+ain+E, +a;1 ai,])

5 24
_zai,j<xj,2 +ej,2)_biyr 11)__¢¢ @4
JEN;
By Young’s inequality, one can obtain
(di+b) 5 q.
zl-,l(di+bi)e,v,2 <+l (25)
2q;, 2

2
2, ayen < 22” 3 at + 4 Z (26)

JEN; qi,() JEN; JEN;



Using RBFNN to approximate the nonlinear terms above yields

di+b) 2 . _
il = ( ) i2,1 R — Z aiz,j = (Di,lTWi,l (Zi,l ) +A;, |Ai,1| <A (27)
2q;, 2q:0 JeN;
where Z;; =[X1,X;1, -, &0 1". From Lemma 3 we can further obtain
|y 5\, 1o 15 1o
218y S5 Za@ Wi (Zig Wi\ Ziy )+ —kiy +—ziy + = A 28
181 byE 18 W ( ,1) ,1( ,1) o S A (28)

il

where ¢ =max{|| @) 7,1l @ P} s Zia =[x x000"
From Lemma 4 and (21), substitute &,, o;, and (25)-(28) into (24) yields

5 2 qig 1
Vie £ =¢iiziy + K125, Sgn(é,1)+ (di +bi)zi,lzi,2 bzt +7@ <

- 29)
i le = = A (
2805 o w I BiE (7w (Z,)-4 |+ D,
2 JjeN; ﬂﬂ Zkzl
Whel‘e D,lz(d +b) 11+k,1/2+A,1/2
Step ( (2<(<n-1): Construct the Lyapunov function candidate as
Vie=Viia +%Zz%[ (30)
and the derivative of (30) is as follow
Vi,é = Vi,[.’—l +2ziy (Zl,Hl + Qo+ & — Qg+ O+ ey — 0_5,/ - étm) 31
Similarly, the following derivation can be obtained
l[ltfell (05114/4116) 1@+05q1[ee (32’)
gir= (0~51[,(/qi,1;‘)zi,1;‘ = {0,',1‘ W,z (Zi,[ + Ay, |Ai,1f| < Zm 33)
= 1 1 1-
Z8i0 < N/ Wil Z )+ =k +—=z7, +=A? 34
08y = k,zg¢ /( ) /( ,z) o e T E TS B (34)
where Z,, = )A(,,f,[ and Z.,=[X1.
Substltutlng fl ., o, and (32)-(34) into (31) yields
Vie < Z(_Cl KZok +KigZig Sgn(é )+qlz_keTe hl,kziz,lf +Di,k\J
k¢% o . (35)
) —~ AiiZik = = n i
+_(ZI—JWTIC (Z[,k )VV:k (Zi,k )_ ¢j +ﬂ Z e/T'ej + ZitZign
ﬂf o 2ki, 2 JeN;
where D, , _k,[/2+Alé 124+w,.
Step n: Consider the Lyapunov function candidate as
Vi =Vis 4228y + =010+ —— 015, +—— 01,6, (36)
2 i 2, 24,
Differentiating V;, yields
I/.vi,n :V.'i,n—l JrZi,n(li.nei,l +ui+9'*TS' (XI) 9 S ( )+U11W11(Xlaut ) 5l.ril//li()’\(xauif)
o T - [ G (37)
+U2,i‘//z,i(“i‘ )—Uz,z‘Wz,i( U; ) én) —0 9 - Vi ———0y,0y;

7 Hi Y225



Similarly, from Young’s inequality and Lemma 3 one can obtain

Zi,nli,nei,l S (OSllz,n /qi,n )Zt%n + O'Sqi,ne;l-ei (38)

= (OSllz,n /qi,n )Zi,n + ei*TSi (Xl) = wi*,—rll-VVi,n (Zi,n ) + Ai,n B |Ai,n S Zi,n (39)
= 1 1 1

Zi,ngi,n = 2 lzn ¢ VVI—I;I ( in ) VVi,n ( in ) + Ekiz,n + Eziz,n + EAlz,n (40)

ZiaUWis 0.5z, +0.5d,, U0,k =1,2 (41)

where Z,, =[X,,0,&,1" and Z, =[X.]".
Substituting (38)-(41) into (37) yields

V.;n San"'z ( L ¢WzTn( xn)W;,n(Z,n)“‘%ZZn+ui—§i,n— ‘i¢nJ+qé’”eiTei

9: (rz,,,S,( )+0)

T
Ly : A AT *

—— (,Uz,izi,nl//z,i (”zf ) +0,,; ) + *dwl,:Ul,i Ul,i + *dwz,,Uz,z Uy
o 2 2

” (M, zops (Rl )+, )+ k,z,,+2Afn (42)

From (42), the adaptive laws of é,-, 151,, zsz- and 55, are designed as follows

é‘ :_’/;’Zi,nSi()A(i)_Gl,iéi (43)

=~ Zi Y0 (Xzauzf) - 0'2,,'131,1' (44)

Oy = Zi yWr (uxf ) - GS,iOZ,i (45)

¢;i = Z ﬂ;:, - WzT ( )VVzk (Zk ) - 04,1‘4;:' (46)

k=1 ik

Let u;, = a;, . Substituting gf,-’,, , a;, and (43)-(46) into (42) achieves
Viu < —CiaZik + KikZi Sgn(‘fi,k)"’ 9 e'e,—huzl |+ ZDI Kt fio z eje;+ it 66
k=1 2 ’ 2 JjeN; i (47)

+52,i l}lTil}],, " O3, 6{[_02’ ¢¢ 4 fn xn &_‘_ dn//l,lul,i Ul,: n dwz,,UzzUz,i »
Hi Ho,i /171 2 2 2
Using Young’s inequality for further smlphﬁcation as
1 1
KirZix SgN (é:zk) < _ZI%I( + _Kiz,k (48)
2 2
O ATA Oy 5 * ~ O % Oy,
—£010,==207(0/-0)=<; 200 506 (49)
4 i

Generalizing (49) to other RBFNN weight terms. Then, (47) can be simplified as

. n 1
Vin S—Z((C,‘,k —EjZ?k —qITkETe +h,-)kzi,f' - ij o Ze e

k=1 JEN; (50)
Oy, O ~T ~ O3 ~T ~ O4; 72
9 0 Ullulz__UZIUZI - ¢1
2r; 2 24, 24,

where



1 K * 1 K *
2 32 T T
z n z Kz k +—= kz n +—= Az n + Wz n +—= du/l tUI,i Ul,i + _dy/Z,IUZ,i UZ,i
k=1 2 2
Ol g1 02, +1 * O3, s7 * O4i =
+—=010, + 0 v, + 0y
27 2,Ul,i 2,”2,; 24 1

4 Stability analysis

Theorem 1: For the nonlinear MASs (1), under certain assumptions, if for given
matrix B;, and parameters 7, >0, g >0, there exist observer gain matrix L, and
symmetric positive matrix P, such that

A'P+PA +2t,P+(q,/2)] + PB,+B'P<0 (51)
holds. Then, by control laws (21) and corresponding adaptive laws, all signals in the
closed-loop system are SGUUB in finite time. Moreover, by selecting appropriate de-
sign parameters, the consensus errors can converge to a neighborhood of the origin.

Proof: Construct the Lyapunov function candidate as

V=" (VatVia) (52)
From (13)(16)(50) one obtains

p<Sed (47P + P4 +20,P+FB +B'R)e, +Z( i grg, - 2B glo,,
= 2y 2, (53)

Thi ~T ~ Oy, ~ qlo 1), gix T
0,,05; — & eje; — ——z e e+h,z +D,
- 2o+ 02 Y e 3 (00 Lt iz )

2#2, JeNi
where D,:Zi]( D

,2/1',,1 +§1i‘/7i,2 +gzz.i/fl,3)) , ;=0 —2r|B|ds, /Tx.l >0 ,

13>0,g =max{q,......q..} + D Gio

JjeN;

Ty =00 =2 |B|dy1; [7i2 >0, =03, =211, || P||dy

Then, (53) can be further transformed into

-
V<Ze (A,TP,+PA +21P+‘§’1+PB +B B]e —Z(Z( iZif +(Co —7)z,k) m9 6,

i=1 =1 k=1 2r;

n 772,101,/1)1,1 4 773,:U2,1U21 0'4 z¢x )+ D, wz( :TBe _ zTPiet )17 | & 9, s 9 9 (54)
Wy 24, ; 2y
OT:’O i ' 13T15 i 1) 0 iU"‘i ! 0, IU i ' 12 3 ~[2 3
+172, [717 L J — 1. S 5, b s, b Oy 4 — Oy, g )
2ub 2, 24, 21, 21:,1 2/1z,1

where 0< p<1 and @ are positive constants.
From (51), to stabilize system (1), there exists symmetric positive definite matrix
O; that results in

ATP +PA +21P+C§I+PB +B'P<—Q, (55)

p0-p) and

According to Young’s inequality, there is (e,-T Pl-el-)p <e Pe+(1-p)p
same for other terms, then (54) can be rewritten as

V<-AV—-AV"+D (56)



where, A, =min{[i"l((%))—w],2c,,k —1,(1—w)f],,,»,(l—w)r]z,,,(l—m)773,,,(1—w)04,,} ,

Ao :min{Wyzphi,kZU,771,:‘?3,772,1'17,773,1'17,54,;'?3} , k=12,....n , A :ZL&J , Ay :Z;'Zl&,i s
D=D,+3 (14, +m, +773,i+0'4,i)(1—p)pp/(l_p). And the value of @ should ensure
that A, and A, are positive.

From (56) and Lemma 2, it can be derived that ¥, will converge to the set

Zi Smin{\/zD/(l_”)Al,\/(ZD/(I—E)AZ)”"} in finite time 7}, where 0< 7 <1.And
-p p
T <maxdi +— ) Y (t0)+A2,t0+ LA (o) +7A, .
7\, (l—p) A, A, (1_p) 7A,

Furthermore, from (19), if &, is bounded in finite time, then v;, will converge
in finite time. Therefore, construct a Lyapunov function as
N n
Ve=Y Y &4 12 (57)
i=l k=1
From [22], (@i — a,-,k| <@, canbe achieved in a finite time T;;,. Therefore, for
2T, =max{T;,}, by choosing @,, =min{@,;,k=1,....,n-1} , K,y =min{x,;,k=1,....n},
@iy = max{(d,- + 1t )w,-yl,w,-’z,...,m,,,,} s A =min{2¢;, +1}, Ay = x/zmin{K,’o —@,,} ,one can
obtain

Ve <=MV = A oV2? (58)
Thus &, converges to the origin in finite time

g+ 2l (L)t A
Ay Ag
Therefore, for ¢ > max {T;, T3}, v, |< min{\/2D/(1 -7)A ,\/(ZD/(I -)A5)"" |, which
implies that all signals of the closed-loop system are SGUUB in finite time. The proof
is completed.

Vi

5 Simulation results

Consider a MAS consisting of one leader and four followers under a directed graph
in Fig.1, where the specific form is as follows

Xip = Xip
X2 =P (t) u; +4tanh (0.25x,-,1x,~,2) + b (t -T ) h; (x,~, U, ) + A, (t)
Vi = Xy

where  py () =0.8+0.4sin(z) , p,(t)=1+0.3cos(r) , ps(t)=0.6+0.5 sin(Zt)z ,
P (1)=0.9+03cos(3r), A (¢)=0.1sin(r) , A, (1) =0.2sin ()", A; (¢) = 0.05sin(¢),
A4 (1)=0.15sin(¢) . The reference signal is y, =sin(7).

By choosing ¢; =0.1 and 7, =0.5 to solve LMIs (51), one can obtain

15.72 -1.88 45.77
P[ = > L[ =
-1.88 0.26 358.51



Choose the fault function 7 (x,,u,)=2+1.5 (x,.,lxi,2 +0.5cos ( )) . The fault evolu-
tion rate and fault occurrence time are 7,; =50 and T, =35, respectively.

Applying the design scheme in Theorem 1, we select the design parameters as
p=099 , c1=0,=30, c;=¢4,=40, co=c,=15, c=0¢,=20,
Ko=k,=01, k,=k,=10, hy=h,=05, w,=w,=001, o,=001,
0y, =05;,=04,;,=10, A, =1, o, =w,=006, @,=w0,=008, r,=1/260,
M=, =10 for i=1,2,3,4 . The initial conditions are x,(0)=x.,(0)=0.5,
£,(0)=%.(0)=0.1. The BLPF is chosenas H (s)=1/(s"+1414s+1).

Fig. 1. Communication topology.
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Fig. 2. System outputs y; and reference signal y».
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Fig. 3. Observer outputs and real signals.
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Fig. 4. Control input curves of u;.

Fig. 2-4 display the simulation results. From these figures above, it is clearly seen
that the observer is able to estimate the state quickly and efficiently. And under the
action of the FTC controller designed in this paper, the system output follows the de-
sired signal well with and without the faults.

6 Conclusion

This paper has investigated a finite time FTC scheme to achieve consensus tracking
for nonlinear MASs subject to non-affine faults, unmeasurable states, uncertain control
coefficients and external disturbances. The command filter and BLPF are introduced to
solve “explosion of complexity” and algebraic ring problem. Furthermore, The LMI is
utilized to find feasible solutions of the observer gain effectively. Based on the finite-
time stability criterion and Lyapunov stability theorem, the designed observer-based
finite-time controller can achieve a good tracking performance and guarantee the finite-
time boundedness of all the closed-loop signals. The utilization of such control protocol
in formation control problem will be considered in our future research.
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