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Abstract. To tackle the problem of decreased accuracy of deep residual shrink-

age networks (DRSN) in the presence of strong noise, this paper proposes an 

improved multi-scale deep residual shrinkage network (IMDRSN) combined 

with bidirectional long short-term memory (BiLSTM) for rolling bearing fault 

diagnosis. Firstly, raw fault data is transformed into time-frequency images, and 

the Xception module captures multi-scale information in the images. Secondly, 

multiple scales of residual shrinkage building units (RSBU) are used to denoise 

the captured image information. Thirdly, introduce a Xception module into each 

RSBU to enhance the model's information retrieval capabilities. Incorporate a 

convolutional block attention module (CBAM) into each RSBU to strengthen the 

model's focus on key features, and introduce an adaptive module to reduce the 

constant bias impact of soft thresholding between input and output. Finally, the 

BiLSTM module is employed to capture the dependencies within the time series 

data, and to perform the task of fault classification. The IMDRSN-BiLSTM 

model is applied to the rolling bearing fault diagnosis task on the case western 

reserve university (CWRU) dataset in noisy environments, and experimental out-

comes demonstrate that the IMDRSN-BiLSTM model delivers higher precision 

and  robustness in identifying bearing malfunctions. 
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1 Introduction 

Rolling bearings are crucial components in mechanical devices, yet they are also 

prone to damage. Bearing faults can lead to equipment downtime and damage, signifi-

cantly impacting productivity and equipment lifespan. Consequently, the research and 

application of rolling bearing fault diagnosis technology are of great importance.  

There are typically two main types of techniques for diagnosing faults in mechan-

ical transmissions: signal analysis methods and those based on machine learning. Signal 

analysis methods [1] utilize pertinent mathematical models to directly analyze signals, 
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subsequently extracting diagnostic features from the signal for fault diagnosis. Never-

theless, this category of signal analysis methods encounters difficulties in resolving is-

sues with a multitude of overlapping signals. Deep learning methods [2], however, have 

the capability to learn relevant features from raw bearing one-dimensional vibration 

signals, thereby supplanting traditional statistical features and attaining superior diag-

nostic accuracy. At present, deep learning techniques have been extensively utilized in 

the domain of mechanical fault detection, yielding remarkable achievements [3,4]. 

Traditional deep learning faces challenges in parameter optimization. The deriva-

tives of the loss function are required to be back-propagated layer-wise, and following 

multiple stages of reverse propagation, the gradients exhibit instability [5]. This also 

makes it difficult for input layer parameters to be effectively updated. The deep residual 

network (ResNet) represents an improvement over convolutional neural network 

(CNN). The ResNet model introduces an identity path on the basis of the CNN model. 

The identity path can alleviate gradient propagation issues, provide feature reuse mech-

anisms, and optimize the model training objectives, reducing the difficulty of model 

training [6]. Due to its excellent parameter adjustment capabilities, the ResNet is widely 

used in bearing fault diagnosis [7,8]. Indeed, despite the superior characteristics of the 

ResNet architecture compared to traditional CNN, it fails to adequately mitigate the 

issue of noise contamination in the fault detection task, particularly in the context of 

mechanical bearing fault diagnosis. The presence of noise is unavoidable in such sce-

narios, and its excessive presence can lead to a decline in the model's precision [9]. To 

address the issues of noise interference and feature extraction in the process of bearing 

fault detection, literature [10] proposes two deep learning network structures. Both net-

work structures combine residual learning and shrinkage methods to effectively extract 

useful features from fault signals and reduce the impact of noise. Among them, the 

network with channel-shared thresholds learns features by sharing thresholds between 

channels to reduce noise effects. In contrast, the network with channel-wise independ-

ent thresholds uses different thresholds to handle features in each channel, better adapt-

ing to the differences between different channels and having better noise reduction ca-

pabilities. However, under severe noise conditions, the fault detection accuracy of the 

deep residual shrinkage network (DRSN) might decline. By incorporating attention 

mechanisms into deep learning architectures, the network can prioritize crucial features 

[11], improving fault diagnosis accuracy. The literature [12] introduces attention mech-

anisms into DRSN, weighting different regions through an attention branch, allowing 

the network to focus more on important areas, and also achieving significant perfor-

mance improvements. The literature [13] introduces bidirectional long short-term 

memory (BiLSTM) network into DRSN to better obtain the dependencies in time series 

data, improving fault diagnosis accuracy. The literature [14] replaces the soft threshold 

function in the DRSN model with a semi-soft threshold function and introduces an 

adaptive slope module to eliminate the constant bias between input and output signals, 

thereby improving fault diagnosis accuracy. 

Based on the previous discussion, this paper presents an improved multi-scale 

deep residual shrinkage network integrated with a BiLSTM network (IMDRSN-

BiLSTM) for the purpose of fault detection in rolling bearings diagnosis in noisy con-
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ditions. Firstly, the approach employs continuous wavelet transform (CWT) to repre-

sent the fault data in the form of time-frequency representations, subsequently drawing 

upon the Xception module to gather information from these representations across var-

ious scales. Secondly, multiple scales of residual shrinkage building units (RSBU) are 

used to denoise the captured image information. Thirdly, each RSBU is integrated with 

Xception modules to boost the model's information acquisition capabilities. Incorpo-

rating a convolutional block attention modules (CBAM) into each RSBU to enhance 

the model's focus on key features, while an adaptive module is employed to reduce the 

constant bias impact of soft thresholding between input and output. Finally, the 

BiLSTM module is employed to capture the dependencies within the time series data, 

and to perform the task of fault classification. The IMDRSN-BiLSTM model is utilized 

for fault diagnosis tasks in noisy environments using the case western reserve university 

(CWRU) rolling bearing fault dataset. The proposed IMDRSN-BiLSTM model has 

demonstrated superior performance in terms of accuracy and robustness, as evidenced 

by experimental results. 

2. Preliminaries 

2.1 Deep Residual Shrinkage Network (DRSN) 

 DRSN primarily employs feature extraction, residual learning, and shrinkage de-

noising to reduce noise in the input signal [15]. DRSN is constructed by stacking con-

volutional layers, a certain number of residual shrinkage building units (RSBU), 

batch normalization (BN) layers, global average pooling (GAP) layers, fully connected 

layers, and an output layer. The principle of RSBU involves the convolutional layer 

transforming the relatively important features into differences significantly larger than 

a threshold, while the features corresponding to redundant information are transformed 

into differences close to the threshold. Subsequently, a subnetwork within the module 

autonomously learns a set of thresholds between important and redundant features, en-

suring that thresholds remain independent across different channels. Finally, soft 

thresholding is applied to eliminate redundant features while preserving important ones. 

The subnetwork of the RSBU [16,17] consists of a GAP layer, fully connected 

layers, BN layers, rectified linear unit (ReLU) activation functions, and a fully con-

nected layer with Sigmoid activation function. The subnetwork autonomously learns 

the thresholds for each channel. The learning process is as follows: the subnetwork 

begins by determining the magnitude of all signals present in the input feature map. It 

then incorporates a GAP layer to consolidate the features. Following this, the pooled 

feature map is inputted into a fully connected layer. Lastly, the fully connected layer 

employs the Sigmoid activation function to restrict the output range to between 0 and 

1, represented by the variable 'a'. The formula for the Sigmoid function is shown in Eq 

(1). 

y =1/(1 + e−x)                                                  (1) 

Where x denotes the input signal, and y signifies the output signal. By employing 
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GAP on the feature maps, a group of features is acquired, represented as A. Later, the 

ultimate threshold is established by taking the product of A and a. The  structure of 

RSBU is presented in Fig. 1. 

 

 Fig. 1. The structure of RSBU. 

The soft thresholding in the DRSN is a widely employed signal denoising tech-

nique. It achieves this by shrinking the signal values towards zero, thereby eliminating 

redundant information and focusing on the relevant information linked to the labels. 

The soft thresholding function, as expressed in Eq (2). Where x is the input signal, y is 

the output signal, and t is a pre-defined threshold. The output signal exhibits a certain 

degree of contraction towards zero compared to the input, effectively performing a non-

linear filtering process. 

y = {
x − t        ，x ≥ t
0  ， − t ≤ x ≤ t
  x + t     ，x ≤ −t 

                                             (2) 

2.2 Convolutional Block Attention Module (CBAM) 

The CBAM is a compact architectural element that integrates both spatial and 

channel-wise attention mechanisms. Its foundational concept revolves around the in-

troduction of an attention mechanism in the spatial and channel dimensions, which en-

ables the network to concentrate on more salient features and enhance its representa-

tional strength [19]. 
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The spatial attention module enhances the model's ability to focus on significant 

spatial regions, allowing it to concentrate more intensively on essential areas and im-

prove its perception of local details. The mechanism of spatial attention operates as 

follows: initially, both maximum and average pooling operations are executed along 

the channel axis of the incoming feature map to emphasize salient features. These fea-

tures are subsequently amalgamated along the channel axis, thereby creating a consol-

idated feature map. This map undergoes processing by a convolutional layer, resulting 

in the generation of spatial attention coefficients. A Sigmoid activation function is then 

utilized to confine these coefficients within the bounds of 0 and 1. Ultimately, the de-

rived spatial attention coefficients are imposed upon the initial feature map, thereby 

regulating the significance of features at each spatial position. 

The channel attention module emphasizes channels that are relevant to the current 

task while reducing the impact of unrelated ones, thereby enhancing the feature repre-

sentation of the relevant channels. The process of channel attention is described as fol-

lows: for the input signal, there is a dual application of global maximum and global 

average pooling operations conducted individually on each channel, resulting in the 

isolation of global maximum and average feature vectors. These vectors are subse-

quently inputs into a shared fully connected layer, which computates the attention 

weights for each channel. The outcome of this layer is a concatenation of the two vec-

tors, producing the final attention weight vector. An application of the Sigmoid activa-

tion function then follows, which calculates the channel attention weights. These 

weights are applied to each channel of the original feature map, generating an updated 

feature map that incorporates the computed attention weights. By integrating these two 

modules, CBAM can significantly amplify the network's concentration on crucial fea-

tures, thereby improving overall network performance. 

3. Fault Diagnosis Based on IMDRSN-BiLSTM 

In response to the reduced diagnostic accuracy of DRSN in noisy conditions, this 

paper introduces a fault diagnosis approach for rolling bearings that utilizes IMDRSN-

BiLSTM. The procedure commences with the extraction of features from time-fre-

quency images through the application of the Xception module. Subsequently, multi-

scale feature processing is conducted using improved residual shrinkage building units 

(IRSBU) at various scales. Finally, a BiLSTM network is employed to facilitate fault 

categorization, thereby accomplishing the fault diagnosis mission. 

The key components of the IMDRSN-BiLSTM network include the Xception 

module, IRSBU, CBAM and BiLSTM. The  structure of IMDRSN-BiLSTM model is 

shown in Fig. 2. 
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Fig. 2. The structure of  IMDRSN-BiLSTM model. 

3.1 Feature Extraction Based on Xception Model 

The Xception network is a deep convolutional neural network that builds upon 

inception v3, offering improvements in accuracy, model size, and computational effi-

ciency [18]. The key innovation of Xception is the replacement of traditional convolu-

tion layers in the inception model with depthwise separable convolutions, thereby 

maintaining performance while substantially reducing parameters and computational 

costs. 

To improve feature extraction and decrease the dimensionality of time-frequency 

images, this paper simplifies the intermediate layers of the Xception network to func-

tion as a feature extraction module, thereby preventing data loss. Furthermore, a max 

pooling layer is incorporated to reduce the dimensionality of the time-frequency im-

ages. The intermediate layers of Xception primarily consist of basic blocks, residual 

connections, and bottleneck layers. The basic block is the core of the Xception network, 

utilizing depthwise separable convolutions to replace the multiple convolutional layers 

found in traditional inception modules. Residual connections connect the input signal 

to the output signal, mitigating the vanishing gradient problem. The constriction point 

is represented by a 1×1 convolutional layer, utilized for reestablishing the channel 

count. The Xception module developed in this study comprises fundamental blocks, 

residual connections, bottleneck stages, and a max pooling layer, as depicted in Fig. 3. 
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 Fig. 3. The structure of  Xception module. 

The feature extraction process using the Xception module mainly involves using 

depthwise separable convolutional layers within the module to process the data. Depth-

wise convolution and pointwise convolution are the two distinct steps that make up 

depthwise separable convolutions. In depthwise convolution, each input channel is con-

volved independently, resulting in a significant reduction in the number of parameters. 

Subsequently, pointwise convolution, which has a kernel size of 1, combines the chan-

nels from the output of the depthwise convolution to produce the final feature map.In 

depthwise convolution, each channel of the input feature maps is processed separately. 

The computation process for the output (Fdw) of depthwise convolution is depicted in 

Eq (3). 

Fdw(i, j, m) = ∑ ∑ ∑ 𝐾(𝑝, 𝑞,𝑚) ∗ 𝐹𝑖𝑛(𝑖 + 𝑝, 𝑗 + 𝑞,𝑚)𝑄−1
𝑞=0

𝑃−1
𝑝=0

𝐾
𝑘       (3)              

Where Fin refers to the input feature map, with i and j symbolizing the height and 

width of the resulting feature map, respectively, while m signifies the count of channels 

in the input feature map. The convolutional kernel utilized for the depthwise convolu-

tion is of size P×Q, represented by K. Following the depthwise convolution, the 

pointwise convolution operation consolidates the outputs. The computational procedure 

for the resulting output (Fpw) of the pointwise convolution is delineated in Eq (4). 

Fpw(i, j,m) = ∑ ∑ ∑ K(p, q, n,m) ∗ Fdw(i + p, j + q,m)1
q=0

1
p=0

M
m=1        (4)  

Where P represents the pointwise convolutional kernel of dimensions 1×1, while 

N signifies the total number of output channels. Through these two processes, the 
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depthwise separable convolutional layer is able to generate new feature maps from the 

initial input and integrate them across the channel axis.              

3.2 Feature Denoising Based on Multiple Scales of IRSBU. 

The primary function of the RSBU is to process the acquired fault signals and 

reduce the interference of noise. The multi-scale feature processing based on the 

IRSBU proceeds as follows: 

Firstly, RSBU of multiple scales utilize convolutional layers to downsample the 

data extracted by the Xception module. However, the downsampling process can lead 

to data loss, which might result in a decline in the precision of fault identification. In 

this paper, the second convolutional layer of the RSBU is replaced with the Xception 

module. The introduction of the Xception module allows each RSBU to read data in 

multiple scales while reducing the parameters and computational load introduced by 

multi-scale processing. 

Secondly, the data distilled from the downsampled Xception component is rein-

forced by the CBAM module, emphasizing crucial features. The spatial attention mech-

anism discerns the interdependencies among features at distinct spatial locations, 

whereas the channel attention mechanism highlights connections within input feature 

channels. By integrating these dual attention mechanisms, CBAM efficiently boosts the 

network's attention on vital details, ultimately enhancing its overall efficacy. 

Then, the soft thresholding function is used to directly subtract the threshold from 

intermediate signals that exceed the threshold, effectively removing noise interference. 

However, this process can also lead to the loss and distortion of some valid information 

due to the constant bias between the input and output signals. Therefore, this paper 

constructs and improves an adaptive module within the RSBU to analyze the input sig-

nals and generate parameters to correct the output signals. Within the adaptive module, 

the input signal is first transformed into a one-dimensional vector by the GAP layer, 

then two fully connected layers with different channel numbers generate scale parame-

ters, and finally, a fully connected layer with a Sigmod activation function converts the 

scale parameters into a range of 0 to 1, yielding correction parameters. Through this 

process, the adaptive module can autonomously learn to generate correction parameters 

for different channels. Utilizing the parameters of the corresponding channels to indi-

vidually correct the output signals can reduce the impact of the constant deviation be-

tween the input and output signals. The output signal correction formula is shown in 

Eq (5), where Fx is the input signal, Fy is the output signal, and t is the threshold deter-

mined by the model. 

Fy = {

α（Fx − t）        ，Fx ≥ t

0               ， − t ≤ Fx ≤ t

 α（Fx + t）     ，Fx ≤ −t 

                                       (5) 

Finally, the feature processing outcomes from the IRSBU (see Fig. 4) at diverse 

scales are merged along the channel axis, and the channel count is reduced by employ-

ing dot product operations to reduce overall complexity. Subsequently, the CBAM is 
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employed to adjust the weights of the fault data both in the channel and spatial dimen-

sions. 

 

Fig. 4. The structure of  IRSBU. 

3.3 Fault Classification Based on BiLSTM 

The BiLSTM is capable of remembering long-term dependencies within a se-

quence due to its built-in memory cells that learn contextual relationships, thereby en-

hancing the representation capability of the model [20]. The BiLSTM model's architec-

ture primarily comprises the following elements: the input layer, the long short-term 

memory (LSTM) cells, the output layer, and a classification layer for tasks involving 

classification. The process of fault detection using BiLSTM operates as follows: 

Firstly, the input layer of BiLSTM receives sequence data that has undergone fea-

ture-weighted processing. Next, within the hidden layer of the BiLSTM, two  LSTM 

operating in opposite directions process the data sequentially and in reverse temporal 

order, respectively, to capture contextual information within the sequence. The process 

of BiLSTM data processing is illustrated in Fig. 5, where the symbols hn
⃗⃗⃗⃗  and hn

⃖⃗ ⃗⃗⃗ repre-

sent the hidden layer outputs of the BiLSTM during forward and backward propagation, 

respectively. 
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Fig. 5. Forward and backward data processing in BiLSTM model 

Subsequently, the BiLSTM combines the outputs of the forward and backward 

LSTM layers by concatenation to obtain the output results, as shown in Eq (6). Finally, 

the classification layer of the BiLSTM performs diagnostic classification on the fault 

data. 

ℎ𝑛=[ℎ𝑛
⃗⃗ ⃗⃗ , ℎ𝑛

⃖⃗ ⃗⃗⃗]                                                        (6) 

4. Experimental Validation And Result Analysis 

4.1 Dataset Description 

 The CWRU rolling bearing dataset is a widely recognized fault diagnosis dataset 

for bearings [21]. The data is classified based on the location of the fault, which includes 

the inner race (IR), outer race (OR) and rolling body (B) and the size of the fault, which 

includes fault diameters of 7, 14 and 21 mils [22]. The data is also classified based on 

the faulty load, which includes 0HP, 1HP, 2HP and 3HP. The load affects the speed of 

the bearing, and the operating conditions are also different. The normal state is repre-

sented as NO. 

For the experiment, the experiment is conducted using fault data from the drive 

end in the 0HP state, with the bearing rotational speed at 1797 RPM. The faults are 

classified into 10 categories based on their location and size, with each category having 

500 samples, and each sample having a length of 1024 signals. The data division of the 

training set and test set follows a 90% and 10% ratio. The fault situations NO, B-07, B-

14, B-21, IR-07, IR-14, IR-21, OR-07, OR-14, OR-21 correspond to the labels 0-9, 

respectively. 

4.2 Simulation Experiment 
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To guarantee the impartiality of experimental outcomes, the structures and param-

eters of all models are maintained uniform. All these models employ the Adam opti-

mizer and the cross-entropy loss function. The batch size for training is set to 32, with 

a total of 40 training epochs being performed. The time-frequency images used as input 

have a size of 128×128×1, and the Leaky ReLU activation function has a coefficient of 

0.01. The L2 regularization coefficient is 0.001. The BiLSTM model has a hidden layer 

size of 16, and the dropout layer has a coefficient of 0.5. Gaussian noise is added with 

a fixed size, and the signal-to-noise ratio is set to -2. The models used for comparison 

are: BiLSTM, ResNet-BiLSTM, DRSN, IMDRSN and IMDRSN-BiLSTM. 

To minimize the effect of random variables on the experimental outcomes, each 

model underwent a quadruple replication process, averaging the results from four suc-

cessive trials. The mean and standard deviation derived from these repetitions served 

as the decisive evaluation criteria. The outcomes of four replicate experiments along 

with their mean values are presented in Tables 1 and 2, respectively. 

Table 1. Accuracy results of repeated fault diagnosis experiments for each model. (unit:%) 

Diagnostic model 

Experimental rounds 

1 2 3 4 

IMDRSN-BiLSTM 99.67 99.50 99.83 99.67 

IMDRSN 99.60 99.20 99.60 99.40 

DRSN 99.40 99.40 98.60 99.00 

ResNet-BiLSTM 98.80 98.80 99.20 99.20 

BiLSTM 98.40 98.80 98.60 97.80 

Table 2. Average accuracy and standard deviation results of each model. (unit:%) 

Model Accuracy rate ± Standard deviation 

IMDRSN -BiLSTM 99.67±0.12 

IMDRSN 99.45±0.17 

DRSN 99.10±0.33 

ResNet-BiLSTM 99.00±0.20 

BiLSTM 98.40±0.37 
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As indicated in Table 2, the diagnostic accuracy of the BiLSTM model is the low-

est, at 98.40%, primarily because the BiLSTM model is designed for processing se-

quential and textual data. The diagnostic accuracy of the ResNet-BiLSTM model is 

99.00%, a 0.60% improvement over the BiLSTM model. This can be attributed to the 

introduction of identity paths, which facilitate the preservation of crucial feature infor-

mation throughout the network, thereby significantly boosting the model's representa-

tional power. The diagnostic accuracy of the DRSN is 99.10%, which is an improve-

ment of 0.10% over the ResNet-BiLSTM model, effectively removing some noise in-

terference. The IMDRSN shows a 0.35% improvement over the DRSN. This is because 

the Xception module expands the receptive field of the DRSN, the CBAM helps the 

DRSN focus more on important features, the adaptive component focuses on resolving 

the recurrent discrepancy between the output and the input data, and the multi-scale 

information processing of the DRSN ensures more complete data preservation. The 

IMDRSN-BiLSTM model demonstrates a 0.22% increase in accuracy compared to the 

IMDRSN. This is due to the fact that the IMDRSN architecture integrates the BiLSTM 

model, allowing the model to track the temporal relationships within time-series data. 

Experimental outcomes demonstrate that the IMDRSN-BiLSTM model delivers higher 

precision and robustness in identifying bearing malfunctions. 

5. Conclusions 

This paper presents a fault diagnosis approach based on the IMDRSN-BiLSTM 

model. Firstly, raw fault data is transformed into time-frequency images, and the Xcep-

tion module captures multi-scale information in the images. Secondly, the RSBU mod-

ule within the DRSN framework is replaced with a multi-scale RSBU to effectively 

denoise features extracted from the image data. Thirdly, each RSBU is integrated with 

the Xception module to enhance the model's capacity for information extraction. By 

incorporating the CBAM module with each RSBU, the model's attention to crucial fea-

tures is improved. An adaptive module is introduced to mitigate the inherent bias be-

tween input and output during the soft thresholding process. Finally, the BiLSTM mod-

ule is employed to capture the temporal dependencies within the sequence data, facili-

tating the fault classification task. Experimental results on the CWRU dataset, which is 

subjected to noise interference, demonstrate the superior performance of the proposed 

IMDRSN-BiLSTM model in terms of both accuracy and robustness. 
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