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Abstract. In the process of human-computer intelligent speech interaction, infer-

ring the speaker's age from human speech signals presents a challenging task. 

The acoustic features related to age in speaker's voice are complex, making it 

difficult for traditional machine learning methods to achieve comprehensive and 

accurate recognition results. This paper proposes a method for speaker age recog-

nition based on a framework that integrates convolutional and self-attention 

mechanisms. Firstly, speech signals are transformed into spectrograms, and a 

CNN-Transformer Dual Branch Parallel Fusion Network (CTPF-Net) is designed 

to achieve a comprehensive extraction of global and local detail features of 

speech signals. Additionally, gender information is considered during training to 

perform unified age-gender recognition, achieving better accuracy than age 

recognition alone. Experiments and analysis on the Common Voice dataset 

demonstrate that the proposed model achieves an average accuracy of 84.5% in 

age recognition tasks. Moreover, without significantly increasing model com-

plexity, the model can accurately differentiate speakers across different age seg-

ments. 
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1 Introduction 

Speech is considered the most convenient mode of human-computer interaction for in-

formation delivery [1]. With the rapid development of artificial intelligence technology, 

expectations for human-computer intelligent speech interactions have increased. Cur-

rent research not only focuses on the semantic information provided by speech but also 

shifts attention to other embedded information such as the speaker's identity, emotions, 

gender, and even age [2]. Endowing machines with the ability to recognize speaker age 

and providing age-appropriate personalized content and services can greatly enhance 

the emotional experience and application efficiency of users. 

Speaker age recognition typically involves the analysis of complex signals whose 

features may be variable, nonlinear, and difficult to interpret. This necessitates the 



development of sophisticated models and algorithms to identify and extract relevant 

features from signals characterized by significant individual differences and variability. 

There are various methods for extracting acoustic features, but the most commonly used 

in speaker age recognition are prosodic features, spectral, and cepstral-based features. 

Yue et al. [3] utilized isolated word speech with support vector machines and Mel fre-

quency cepstral coefficients to recognize ages in youth, middle-aged, and elderly 

groups. Chen et al. [4] considered the impact of the speaker's emotional state on age 

recognition, combining speech parameters such as fundamental frequency, zero-cross-

ing rate, and Mel frequency cepstral coefficients under different emotional states, and 

constructed a speaker age recognition system based on the Gaussian Mixture Model 

(GMM). Du et al. [5] proposed a statistical analysis recognition method based on multi-

resolution features of effective frequency bands. This method employs wavelet packet 

transform to decompose audio into effective frequency bands, connecting wavelet 

packet coefficients of each band to form a comprehensive calculation of Mel frequency 

cepstral coefficients, obtaining multi-resolution feature parameters (WPMFC), and 

modeling using Gaussian Mixture Models. Additionally, Bahari et al. [6] have proposed 

a new method for estimating speaker age based on i-vectors, where each utterance is 

modeled by its corresponding i-vector. Intra-speaker covariance normalization tech-

niques are then used to compensate for session variability, and finally, Least Squares 

Support Vector Regression (LSSVR) is applied to estimate the speaker's age. 

Despite some progress in research on speaker age recognition, extracting significant 

speech age characteristics and designing high-performance classification models re-

main challenges. The similarity of temporal and spectral acoustic characteristics across 

different age groups is one of the reasons for the lower accuracy when using acoustic 

features for age classification [7,8]. Therefore, many scholars have adopted deep learning 

methods, directly inputting temporal, frequency domain representations, or spectro-

grams into neural networks, utilizing the powerful data fitting capabilities of deep net-

works to extract latent features for analysis. Ghahremani et al. [9] applied the x-vector 

neural network architecture for speaker age recognition, mapping variable-length utter-

ances to fixed-dimension embedding vectors containing relevant sequential infor-

mation to construct x-vectors. These x-vectors are then used to estimate age based on 

the speaker's speech signals. Tursunov et al. [10] designed a Multi-Attention Module 

(MAM) that considers both spatial and temporal features of speech signals, which was 

combined with Convolutional Neural Networks (CNN) to enhance the ability to classify 

age and gender. Sánchez-Hevia et al. [11] proposed a secure and automatic speech recog-

nition system named LimitAccess, which distinguishes between children and adult 

voices using spectrograms and MFCCs through a lite CNN model. Mavaddati [12] tested 

a series of CNNs and RNNs for performance in a speech age recognition system and 

proposed a fine-tuned ResNet34 architecture combined with data augmentation and 

transfer learning to improve robustness and performance on new data. 

This paper proposes a method for speaker age recognition based on a framework 

integrating convolutional and self-attention mechanisms, using a designed CNN and 

Transformer Dual Branch Parallel Fusion Network (CTPF-Net) to extract high-dimen-

sional global and local features from spectrograms. By incorporating gender infor-

mation into age recognition, the accuracy of age recognition has been improved. 



  

Experiments on the Common Voice dataset and comparisons with existing methods 

validate the effectiveness of this model. 

2 Proposed Age recognition Methodology 

Temporal and frequency domain analyses play crucial roles in speech processing, yet 

both have limitations when used independently. Temporal analysis lacks an intuitive 

understanding of the frequency characteristics of speech signals, while frequency do-

main analysis lacks information on how speech features evolve over time [13]. Since 

speech is a time-varying signal, its spectrum also changes over time. Therefore, the age 

recognition method proposed in this paper is based on the analysis of spectrograms. 

Spectrograms integrate the characteristics of frequency spectra and temporal wave-

forms, vividly displaying how the speech spectrum changes over time and containing a 

wealth of information about the speaker, which is commonly used in voiceprint recog-

nition. Additionally, converting speech signals into two-dimensional images allows for 

the application of advanced algorithms from image processing, enhancing the models 

for speech analysis and processing. 

As illustrated in Figure 1, the proposed speech age recognition process begins by 

converting speech signals into spectrograms. Subsequently, the designed CTPF-Net 

model extracts deep features from both local and overall aspects of the spectrogram. 

Finally, the age of the speaker is determined through a classification model. 

 

Fig. 1. Speech Age Recognition Process 

2.1 CNN and Transformer parallel fusion network (CTPF-Net) 

CTPF-Net, as depicted in Figure 2, consists of two parallel processing branches: a CNN 

branch and a Transformer encoder branch. The CNN branch includes three convolu-

tional layers (Conv), two batch normalization layers (BN), and two pooling layers 

(MP). The first convolutional layer captures local features in the spectrogram, the sec-

ond serves as an intermediate layer to generate feature maps for subsequent operations, 

and the third convolutional layer extracts deeper, hidden cues from the input data. 

Through this CNN branch, the model learns the implicit relationships between time and 

frequency in the spectrogram to obtain relatively significant local age characteristics. 

 Speech Dataset Spectrogram Feature Coupling 
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Fig. 2. Structure of CTPF-Net 

The Transformer, known for its self-attention mechanism [14], has robust parallel com-

putation capabilities and can learn long-range dependencies between image pixels on a 

global scale, thereby possessing strong global information extraction abilities. This pa-

per adopts the encoder portion of the Transformer and constructs a Transformer encoder 

branch. Initially, convolution operations uniformly segment the image into N blocks, 

followed by a flattening operation to convert it into a two-dimensional matrix format. 

This matrix is then fed into a 𝐷0 dimensional linear embedding layer to produce the 

original embedding sequence: 

 𝑒 ∈ ℝ𝑁×𝐷0  (1) 

Learnable positional embeddings of the same dimension are added to the original em-

bedding sequence to utilize spatial prior information, resulting in the embedding: 

 𝑍0 ∈ ℝ𝑁×𝐷0  (2) 

𝑍0 serves as the input to the Transformer encoder, comprising L layers of Multi-Head 

Self-Attention (MSA). The self-attention (SA) mechanism, a core principle of the 

Transformer, updates the state of each embedding block by globally aggregating infor-

mation at each layer: 

 𝑆𝐴(𝑧𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑖𝑘𝑇

√𝐷ℎ
) 𝑣 (3) 



  

Here, [𝑞, 𝑘, 𝑣] = 𝑧𝑊𝑞𝑘𝑣, where 𝑊𝑞𝑘𝑣 ∈ ℝ𝑁×3𝐷ℎ  is the projection matrix, and vectors 

𝑧𝑖 ∈ ℝ1×𝐷0, 𝑞𝑖 ∈ ℝ1×𝐷ℎ  are the i-th rows of z and q, respectively. MSA extends SA by 

concatenating multiple SAs and projecting the dimensions back to ℝ𝐷0. Layer normal-

ization is applied to the output of the last Transformer layer to obtain the encoded se-

quence: 

 𝑍𝐿 ∈ ℝ𝑁×𝐷0  (4) 

Global features are acquired through n serially connected Transformer encoders. Con-

sidering training costs, this study sets n = 1. 

After obtaining the feature maps from the two independent branches, the outputs 

from the CNN branch (local features) and the Transformer Encoder branch (global fea-

tures) are merged. This creates a more informative composite feature map for further 

processing by the age recognition module. The model utilizes only two parallel net-

works without overly complex structures to effectively capture low-level spatial fea-

tures and high-level semantic contexts, enhancing the model’s inferential performance. 

2.2 Improved spectrogram feature extraction algorithm 

Spectrogram 

A spectrogram is a three-dimensional spectrum, a graphical representation of how the 

speech spectrum changes over time, with frequency on the vertical axis and time on the 

horizontal axis. The intensity of a given frequency component at a specific time is in-

dicated by the shade of gray or color tone at that point [15]. The construction process 

of a spectrogram is shown in Figure 3. Initially, the speech signal is converted into 

WAV format and preprocessed. Then, through frame segmentation and windowing op-

erations, the speech signal is divided into several frames. In this paper, the Hamming 

window is used, and its expression is as follows: 

 𝑤(𝑛) = {
0.54 − 0.46 cos [

2𝜋𝑛

𝑁−1
]   0 ≤ 𝑛 ≤ 𝑁 − 1

0                                                    𝑛 = 𝑜𝑡ℎ𝑒𝑟𝑠
 (5) 

where n represents the frame index, and N represents the frame length. 

 𝑋𝑛(𝑒𝑗𝑤) = ∑ 𝑥(𝑚)𝑤(𝑛 − 𝑚)𝑒−𝑗𝑤𝑚∞
𝑚=−∞  (6) 

 𝑋𝑛(𝑛, 𝑒𝑗𝑤) = ∑ 𝑥𝑛(𝑚)𝑒−𝑗𝑤𝑚𝑁−1
𝑚=0  

 (7) 

Next, the Short-Time Fourier Transform (STFT) and Discrete Fourier Transform 

(DFT) are applied to each frame of the speech signal x(n): 

Let the frequency index be k, then the magnitude spectrum estimate 𝑋𝑛(𝑛, 𝑘) of the 

signal x(n) in the frequency domain is: 

 𝑋𝑛(𝑛, 𝑘) = ∑ 𝑥𝑛(𝑚)𝑒−𝑗
2𝑘𝜋𝑚

𝑁𝑁−1
𝑚=0  (8) 



The power spectral density function 𝑃(𝑛, 𝑘), also known as the power spectrum, is 

computed from the squared magnitude spectrum: 

 𝑃(𝑛, 𝑘) = |𝑋(𝑛, 𝑘)|2 = (𝑋(𝑛, 𝑘)) × (𝑐𝑜𝑛𝑗(𝑋(𝑛, 𝑘))) (9) 

where 𝑐𝑜𝑛𝑗(𝑋(𝑛, 𝑘)) denotes the complex conjugate of 𝑋(𝑛, 𝑘). 

To more intuitively represent the signal's energy, the power spectrum is converted 

to decibel (dB) units: 

 𝑃𝑑𝐵(𝑛, 𝑘) = 10 lg(𝑃(𝑛, 𝑘)) (10) 

Finally, these energy values are organized into a matrix, and the matrix is converted 

into a two-dimensional image, thereby generating the spectrogram. 

 

Fig. 3. Spectrogram Construction Process 

Figure 4 displays a spectrogram of a segment of speech, where the light yellow areas 

represent voiced parts and the rest are unvoiced parts. The horizontal bars indicate the 

resonance peaks of the speech signal. 

 

Fig. 4. Spectrogram of Speech 

Spectrogram Feature Extraction Method Based on Frame Shift Strategy.  

The conventional method of generating spectrograms typically segments speech signals 

into 1.5-second intervals, which can result in information distortion and thus lower 

recognition rates in systems. To maximally preserve the unique characteristics of speak-

ers and increase the dataset size, this paper utilizes a frame shift strategy for spectro-

gram feature extraction. Each speaker's speech signal is finely segmented to generate 

multiple spectrograms. 
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Let the initial time be 𝑡0, and the frame shift amount be ∆𝑡. Then, the starting time 

of the k-th segment is: 

 𝑡𝑘 = 𝑡0 + 𝑘∆𝑡 (11) 

In this paper, initial segmentation is done over larger time intervals (e.g., 0-1.5s, 0.5-

2.0s, 1-2.5s) until the end of the speech segment. More precise frame shifts are then 

performed within each larger time interval (e.g., 0-0.25s, 0.2-0.45s), with overlapping 

frames set to minimize information loss due to the Hamming window effect. Figure 5 

illustrates some of the spectrograms generated using the frame shift strategy. 

     

     

Fig. 5. Partial Spectrograms Generated Using Frame Shift Strategy 

3 Experiment and Analysis 

3.1 Databases 

The Common Voice dataset [16] is currently the world's largest open-source speech 

dataset, used to develop optimized speech training technologies. It includes 32,123 

hours of transcribed speech across 129 languages. The verified data also contain demo-

graphic metadata such as speaker age, gender, and accent. In this project, we use the 

English subset of the Common Voice dataset. 

This paper utilizes 80 hours of data as the training sample and 1.5 hours of data for 

validation and testing. Table 1 shows the information of the speakers in the dataset, and 

Figure 6 displays the distribution of age and gender categories. 

This paper utilizes 80 hours of data as the training sample and 1.5 hours of data for 

validation and testing. Table 1 shows the information of the speakers in the dataset, and 

Figure 6 displays the distribution of age and gender categories. 



Table 1. Distribution of Age and Gender in the Common Voice Dataset 

Age 

Groups 

Train Development Test 

Male Female Male Female Male Female 

Teens 4249 1060 84 28 82 34 

Twenties 18494 3955 389 87 376 80 

Thirties 13662 4560 256 88 295 92 

Forties 8684 2187 180 60 184 47 

Fifties 4946 4467 116 87 116 89 

Sixties 2835 1722 55 40 43 44 

Total 70821 1470 1482 

   

Fig. 6. Distribution of Age and Gender in the Common Voice Dataset 

From Table 1 and Figure 6, it is evident that both age and gender distributions in the 

dataset are imbalanced. Data for males significantly outnumber that for females, and 

the data for adults in their twenties, thirties, and forties are substantially more prevalent 

than those for teenagers and older age groups (fifties, sixties). 

3.2 Parameter Settings.  

The experimental environment is on a Windows 11 operating system with an NVIDIA 

RTX 4080 SUPER graphics card. The model framework is implemented in TensorFlow 

[17], with the Adam optimizer, a learning rate of 0.0001, dropout set to 0.5, and itera-

tion number set to 40. The model with the highest accuracy is retained for testing. The 

model evaluation metric used is the average recognition accuracy rate A, defined as 

follows: 

 𝐴 =
∑ 1 (𝑃𝑖=𝑇𝑖)𝑛

𝑖=1

𝑛
 (12) 

where 𝑃𝑖 is the predicted label for the 𝑖𝑡ℎ  instance, 𝑇𝑖  is the true label for the 𝑖𝑡ℎ  in-

stance, 1 (𝑃𝑖 = 𝑇𝑖) indicates that the value is 1 when 𝑃𝑖 = 𝑇𝑖, and 0 otherwise, and n is 

the total number of samples. 



  

3.3 Speaker age recognition based on CTPF-Net 

Acoustic features may vary between genders [18]. To investigate whether the model 

proposed in this study can extract age-related acoustic features associated with gender, 

both gender-independent and gender-specific speech age recognition were conducted. 

The comparative results are presented in Table 2. 

Table 2. Comparison of the effects of gender on age identification 

Model Type 
Average Recognition 

Accuracy Rate A% 

Age 78.4 

Age-Gender 84.5 

According to Table 2, the gender-specific speech age recognition results are 6.1% 

higher than the gender-independent results. This indicates that gender information 

aids in distinguishing speech signals from different age groups, and the model pro-

posed in this study is capable of learning age-related acoustic features associated with 

gender. 

3.4 Result Analysis 

To further validate the effectiveness of the model proposed in this paper, comparative 

experiments were conducted using the methods proposed in references [5], [9], [10], 

and [12]. The comparison results are shown in Table 3. 

From Table 3, it can be deduced that the model presented in this paper achieves an 

average recognition accuracy of 84.5% on the Common Voice dataset, which represents 

an improvement compared to other methods. 

Table 3. Comparison of Average Recognition Accuracy Rate (A) for Different Algorithms 

 Input Feature 
Average Recognition Ac-

curacy Rate A% 

[5] WPMFC 63.2 

[9] x-Vector 74.8 

[10] Spectrogram 78.3 

[12] Spectro-temporal 80.2 

CTPF-Net (Proposed) Spectrogram 84.5 

Figure 7 presents the confusion matrix for speech age recognition on the test set, 

showing that the model achieves accuracy rates of 92.1% and 90.9% for the female-

fifties and female-sixties categories, respectively. It also performs well in the categories 

of female-twenties, female-thirties, female-forties; and male-teens, male-twenties, 

male-fifties, male-sixties. However, there are instances where some female-teens are 

misclassified as female-thirties, some male-thirties as male-twenties, and some male-

forties as either male-twenties or male-thirties. This misclassification occurs because 

acoustic features such as pitch, fundamental frequency, and resonance peaks are similar 

between adjacent age groups. Additionally, due to the imbalanced data distribution, 



smaller categories might experience overfitting, leading to a decrease in model perfor-

mance. 

 

Fig. 7. Confusion Matrix for Speech Age Recognition 

4 Conclusion 

Recognizing attributes such as age and gender from speech signals enables more con-

venient and intelligent human-computer interactions. However, due to the complexity 

of speech signals and the variability and non-linearity of acoustic features, speech age 

recognition remains a challenging task. To address this issue, this paper draws on pop-

ular image processing methods and combines convolutional neural networks with 

Transformer architecture to propose a CNN and Transformer dual-branch parallel fu-

sion network (CTPF-Net) for multidimensional feature extraction from spectrograms. 

This is followed by feature fusion and age classification using a classifier. To better 

preserve and extract information from spectrograms, a frame shift strategy for spectro-

gram feature extraction is employed, which preprocesses the original audio data and 

also compensates for issues such as the size and uneven distribution of the dataset. 

To validate the performance of the proposed speech age recognition method, exper-

iments were conducted on the English subset of the Common Voice dataset. The study 

first examined the impact of gender on speech age recognition and then compared the 



  

model with acoustic feature methods and deep learning approaches. The results demon-

strate that the proposed method effectively extracts gender-related speech age features 

and achieves an average accuracy of 84.5% in speech age recognition tasks. 

While the method proposed in this paper shows an improvement in accuracy over 

other methods, it performs moderately in age classification for specific groups (such as 

female teens, male thirties, and male forties). Future work will focus on several areas: 

first, finding more significant speech age features and more efficient speech age recog-

nition algorithms to reduce recognition errors between adjacent age groups; second, 

given that real-life acoustic environments are complicated by the presence of noise, 

more advanced models or methods (such as multimodal fusion) will be needed to de-

velop more robust models. Finally, addressing performance inconsistencies due to im-

balanced training data is another area worth exploring. 

References 

1. Ramakrishnan S, El Emary I M M. Speech emotion recognition approaches in human com-

puter interaction[J]. Telecommunication Systems, 2013, 52: 1467-1478. 

2. Hanifa R M, Isa K, Mohamad S. A review on speaker recognition: Technology and chal-

lenges[J]. Computers & Electrical Engineering, 2021, 90: 107005. 

3. Yue M, Chen L, Zhang J, et al. Speaker age recognition based on isolated words by using 

SVM[C]//2014 IEEE 3rd International conference on cloud computing and intelligence sys-

tems. IEEE, 2014: 282-286. 

4. Chen O T C, Gu J J. Improved gender/age recognition system using arousal-selection and 

feature-selection schemes[C]//2015 IEEE International Conference on Digital Signal Pro-

cessing (DSP). IEEE, 2015: 148-152. 

5. Du X N, Yu Y B. Multi Resolution Feature Extraction of Effective Frequency Bands for 

Age Recognition[J]. Journal of Signal Processing, 2016, 32 (09): 1101-1107. 

6. Bahari M H, McLaren M, van Leeuwen D A. Speaker age estimation using i-vectors[J]. 

Engineering Applications of Artificial Intelligence, 2014, 34: 99-108. 

7. Lortie C L, Thibeault M, Guitton M J, et al. Effects of age on the amplitude, frequency and 

perceived quality of voice[J]. Age, 2015, 37: 1-24. 

8. Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural net-

works[J]. Science, 2006, 313(5786): 504-507. 

9. Ghahremani P, Nidadavolu P S, Chen N, et al. End-to-end Deep Neural Network Age Esti-

mation[C]//Interspeech. 2018, 2018: 277-281. 

10. Tursunov A, Mustaqeem, Choeh J Y, et al. Age and gender recognition using a convolutional 

neural network with a specially designed multi-attention module through speech spectro-

grams[J]. Sensors, 2021, 21(17): 5892. 

11. Sánchez-Hevia H A, Gil-Pita R, Utrilla-Manso M, et al. Age group classification and gender 

recognition from speech with temporal convolutional neural networks[J]. Multimedia Tools 

and Applications, 2022, 81(3): 3535-3552.  

12. Mavaddati S. Voice-based age, gender, and language recognition based on ResNet deep 

model and transfer learning in spectro-temporal domain[J]. Neurocomputing, 2024, 580: 

127429. 

13. Akan A, Cura O K. Time–frequency signal processing: Today and future[J]. Digital Signal 

Processing, 2021, 119: 103216. 



14. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural 

Information Processing Systems, 2017, 30. 

15. Anusuya M A, Katti S K. Front end analysis of speech recognition: a review[J]. International 

Journal of Speech Technology, 2011, 14: 99-145. 

16. Ardila R, Branson M, Davis K, et al. Common voice: A massively-multilingual speech cor-

pus[J]. arXiv preprint arXiv:1912.06670, 2019. 

17. Abadi M, Agarwal A, Barham P, et al. Tensorflow: Large-scale machine learning on heter-

ogeneous distributed systems[J]. arXiv preprint arXiv:1603.04467, 2016. 

18. Torre III P, Barlow J A. Age-related changes in acoustic characteristics of adult speech[J]. 

Journal of communication disorders, 2009, 42(5): 324-333. 


