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Abstract. We present an efficient and accurate point cloud registra-
tion method that has been successfully applied to real-world landslide
detection tasks. Existing point cloud registration methods often suffer
from either low accuracy or high computational complexity, rendering
them impractical for real-world applications. In this paper, we propose
an efficient and accurate SparsePoint Transformer framework for
point cloud registration, which directly applies an attention mechanism
to sparse points, significantly enhancing computational efficiency. Addi-
tionally, we introduce a cascaded feature aggregation encoder to
enrich the contextual details in point clouds, thereby improving registra-
tion accuracy. To further adapt our framework for landslide detection, we
propose the point cloud registration for landslide detection (PCR4LD)
framework, built on the SparsePoint Transformer pipeline. This frame-
work first addresses vegetation interference with two proposed solutions.
Subsequently, it employs ICP-based pose refinement for further pose
refinement, ensuring accurate landslide detection. Finally, region merg-
ing and filtering are applied to identify the landslide-affected regions.
Our method not only achieves state-of-the-art registration results on the
public KITTI dataset with a significant speedup but also demonstrates
outstanding performance in real-world landslide detection tasks, signifi-
cantly outperforming other methods.
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1 Introduction

Point cloud registration [11] has long been a prominent task in computer vision,
aiming to align point clouds captured from different viewpoints into a common
reference coordinate system. This technique has a wide range of applications,
including high-precision map generation in autonomous driving [30, 22], landslide
detection in remote sensing [27], and pose estimation for robotic grasping [15, §].
There are numerous approaches to point cloud registration, which can broadly be
categorized into three types: optimization-based methods [4,19, 18, 7], learning-
based methods [26, 1, 10, 14], and handcrafted feature-based methods [16, 15, 17].
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Before deep learning became widely used in vision tasks, most methods re-
lied on the Iterative Closest Point (ICP) algorithm [4,19, 18] and handcrafted
descriptor matching techniques [15, 17]. These traditional methods can efficiently
perform registration without significant computational resources. However, they
suffer from poor generalization performance [1] and struggle in outdoor real-
world scenarios. As a result, their performance in highly noisy and cluttered
mountain scenes is notably poor, leading to suboptimal point cloud alignment
and, consequently, inaccurate landslide detection.

With the advent and widespread adoption of deep learning [21, 12], learning-
based methods [1,10,14]| have gained significant attention in the community,
leading to the emergence of learning-based methods. They can be divided into
two categories: correspondence-based methods [1, 10, 14] and correspondence-free
methods [23,31, 3]. Correspondence-based methods first utilize deep networks
to learn point cloud features, then establish correspondences through feature
matching, and finally estimate the pose using techniques like RANSAC [7] or
Singular Value Decomposition (SVD) [4]. In contrast, correspondence-free meth-
ods directly learn the SE(3) pose parameters through a network, bypassing the
need to estimate correspondences to achieve registration. While both of these
learning-based methods demonstrate significantly improved performance over
traditional methods, they also come with drawbacks. Due to the deep networks
and their direct handling of dense point clouds, these approaches are often in-
efficient and heavily reliant on computational resources. This creates challenges
for practical deployment, making them less suitable for real-world applications.

To achieve robust and accurate registration, we have opted for a learning-
based approach as our solution. To address the issues of high computation
time and resource overhead in current learning-based methods, we propose the
SparsePoint Transformer feature extraction framework. By processing sparse
rather than dense point data directly, our approach significantly improves effi-
ciency. Additionally, we observed that using a transformer directly on sparse
points results in the loss of local detail information, ultimately leading to a de-
crease in accuracy. To mitigate this issue, we introduce a cascaded feature
aggregation encoder that performs feature downsampling while aggregating
and cascading the features, thereby reducing the loss of local information and
enhancing feature robustness.

Finally, to better apply our registration algorithm to landslide detection, we
integrated ICP-based fine registration and a region merging and elimination al-
gorithm into the registration pipeline. ICP-based pose refinement allows for
pose refinement and more precise alignment. Following this, we applied an algo-
rithm based on Euclidean distance and region-growing segmentation to identify
the landslide dectection.

In this paper, we have two primary objectives: first, to design an efficient
and accurate point cloud registration algorithm that does not rely on extensive
computational resources; second, to apply this algorithm to a remote sensing
task—landslide detection through point cloud registration. The design of the
SparsePoint Transformer enables both lightweight and efficient performance. Ad-
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Fig. 1: Feature extraction pipeline of our method.

ditionally, the cascaded feature aggregation encoder and ICP-based fine regis-
tration further ensure accuracy and robustness. With these designs, our method
can effectively perform landslide detection in real-world scenarios.

We validated our approach on both indoor and outdoor datasets, demonstrat-
ing its performance. Our method achieves efficient point cloud registration while
maintaining accuracy, with a runtime that is only 0.04 times that of SpinNet
and 0.2 times that of GeoTransformer [14]. Notably, on the KITTI dataset, our
method achieves comparable registration recall (RR) and rotation error (RE)
to GeoTransformer, realizing accurate registration. Finally, we conduct land-
slide detection on our own collected mountain data, where our method achieves
a 85.2% mean Average Precision (mAP), demonstrating accurate and robust
landslide detection. Our main contributions are as follows:

e We propose the SparsePoint Transformer, a lightweight registration frame-
work that significantly improves computational efficiency and achieves effi-
cient, accurate registration.

e We introduce a feature aggregation encoder that minimizes the loss of local
information, ensuring registration accuracy.

e We present a new landslide detection solution based on point cloud registra-
tion, which has shown excellent performance in real-world scenarios.

2 Related Work

Point cloud registration [11] is a classic and significant task in computer vi-
sion. Historically, most point cloud registration methods [4,15,17,7] are based
on optimization techniques or handcrafted feature descriptors. The introduction
of the Fast Point Feature Histogram (FPFH) descriptor [15] marks a milestone
in point cloud registration, as it enables global registration through matching
local descriptors. In recent years, with the rise of deep learning [12], learning-
based methods (26,10, 1, 14] emerge. 3DMatch [26] pioneers learning-based ap-
proaches by utilizing convolutional networks to capture geometric features of
local patches. Predator [10] addresses the issue of low overlap in point clouds
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by predicting overlap scores using graph convolutional networks. With the ad-
vent of transformers [21] and their application in vision tasks [9], numerous
frameworks [24, 14, 25] based on transformer feature extraction and matching
are proposed, achieving state-of-the-art results in point cloud registration.

3 Point Cloud Registration

3.1 Problem definition

Point cloud registration (PCR) involves estimating a transformation to align two
point clouds. This task can be framed as a least-squares optimization problem

; (1)

arg min E IR Pz, +t—qy,
RESO(3),tR3
(pm,; 7Qy,)ec

where C is the set of correspondences. In this paper, we first align the source
and target point clouds, and then assess whether changes in the terrain have
occurred by analyzing the distance discrepancies between corresponding points.

3.2 Cascaded feature aggregation encoder

We process sparse point features directly using a Transformer [14, 21] to improve
efficiency, which inevitably leads to the loss of local detail information in the
original point cloud P and Q. To address this, we designed a cascaded feature
aggregation encoder to capture and aggregate local details from dense points.
This allows the resulting sparse features to incorporate rich contextual geometric
information, minimizing feature loss and ensuring accurate registration.

The feature aggregation encoder is implemented using KPConv [20] as the
basic module, using original point clouds P and Q as input, performing multi-
level downsampling and feature aggregation. At each layer 67, both the points
P and their features F* are downsampled where i = 1,2, ...,6. And KPConv [20]
is used to aggregate features from the original points to the downsampled points.
After 6 layers © of feature extraction, we obtain the final sparse features FF and
FC.

Notably, in the last two downsampling steps, to prevent excessive sparsity
and the subsequent loss of detail, we introduced multi-stage cascaded feature
embedding. The specific approach is shown in Figure 1 on the left. The outputs
of the first three layers are concatenated with the inputs of the second-to-last
layer, while the outputs of the middle three layers are concatenated with the
inputs of the last layer.

F't = ©'(concat[F"~ 1, F'=2 F'—? F'™4)) (2)

where i = 5,6, F = FS. This approach establishes connections between dense
surface-level features and sparse deep-level features, fully leveraging contextual
information. As a result, the final sparse features retain the ability to represent
local details effectively.
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3.3 SparsePoint Transformer

Unlike PointTransformer [29] and GeoTransformer [14], which directly use points
or superpoints as inputs for the Transformer, we utilize sparsely sampled points
as input. This approach significantly reduces computational cost and inference
time, and due to the smaller data volume, it also greatly decreases memory
usage, making it less dependent on extensive computational resources.

In the cascaded feature aggregation encoder, we ensure comprehensive con-
textual information representation while performing downsampled feature aggre-
gation. The output F from the encoder is then fed into the SparsePoint Trans-
former for further refinement of the features. This stage captures long-range
dependencies between sparse points P and enhances the global representation of
local features. Through iterative alternation of self-attention and cross-attention
mechanisms, we obtain refined sparse features F. These features possess global
awareness and enable cross-point cloud interaction, which benefits subsequent
feature matching tasks. ~
Self-attention mechanism. First, the sparse point features F € RIPI*d of the
point cloud P € RIPIx3 are used as the input to the model, and the weighted
projection feature Z € RIPI*? is computed using the value matrix WV

P
z; = Zai,j (XjWV) (3)

j=1

Here, a; ; represents the attention weight coefficient, which is obtained by ap-
plying a row-wise softmax to the attention scores E. The attention score e; ; is
calculated by the product of the query matrix W€ and the key matrix W:

W) (e wH)
Lz

Subsequently, the self-attention module computation is completed by applying a
linear layer, a normalization layer, and a feed-forward layer. Similarly, the same
steps are applied to the point cloud P to complete the self-attention module
computation.

Cross-attention mechanism. To enhance the cross-point-cloud interaction
capability of the features, we also compute the cross-attention between point
cloud P and point cloud Q. First, similar to the self-attention mechanism, the
weighted projection feature is computed for point cloud P using the matrix WV:

(4)

10|
2l = a;; (xfWV) (5)
j=1

Here, a; ; represents the attention weight coefficient, which is obtained by ap-
plying a row-wise softmax to the attention scores E. The difference in cross-
attention is that the attention score e;; e is computed by the product of the
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Fig. 2: The whole framework of point cloud registration for landslide detection.

query W€ from point cloud P and the key WX from point cloud Q:
(xPW?) (xfWH)"
€ij = =
Vi

Similarly, we apply the same steps to point cloud Q to complete the cross-
attention module computation. By iteratively alternating between the self-attention
and cross-attention mechanisms, we obtain refined sparse features F.

(6)

4 PCR for Landslide detection

4.1 ICP-based pose refinement

Our sparse point feature matching method is efficient and robust, but it does
have some limitations in accuracy compared to high-precision point cloud regis-
tration methods. Given that landslide detection based on point cloud registra-
tion requires precise alignment, we introduce an ICP-based pose refinement to
enhance the accuracy of the pose estimation.

The approach is straightforward: we use ICP to achieve fine registration.
Specifically, considering that outdoor environments often contain large flat re-
gions, we employ a point-to-plane ICP that incorporates discovered constraints
to accelerate convergence.

Tearg;ninzwi i (T i — )l (7)

where w; is the weight and 7; is the normal at p;. Through iterative optimization,
we ultimately obtain a transformation matrix T = {R,t} with reduced error.

4.2 Region detection

By performing point cloud registration, we achieve high-precision alignment of
point clouds captured from different viewpoints at different times. Given the
static nature of the actual mountain structure, we assume that areas with sig-
nificant changes in the mountain point cloud indicate the presence of landslides.
However, considering that seasonal changes in vegetation, such as trees, could
interfere with landslide detection, we propose two solutions:
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e Semantic segmentation: Using a mature semantic segmentation network to
identify and remove trees from the point cloud.

e Color mask: A more efficient method that removes trees by applying a simple
color threshold.

In practice, the choice between these two methods depends on the trade-off
between accuracy and efficiency. After applying the selected method, we obtain
the filtered point clouds P and Q7.

Landslide point classification. Subsequently, we define a landslide determi-
nation factor and use it to distinguish between landslide P; and non-landslide
areas P, by evaluating the Euclidean distance between the aligned point clouds.

2
Pl—{p{‘p{EPf/\Tb<HRp{-l—t—qu2<Tt} (8)

where 7, and 7, are the upper and lower bounds of the distance.

Region merging and filtering. Finally, given a predefined area threshold and
growth parameters, we perform region merging and filtering based on region
growing segmentation. We consider only regions with an area larger than the
specified threshold as landslide regions, ignoring smaller changes. Through this
process of region merging and filtering, we ultimately obtain the set of landslide
regions S. In practical applications, the sensitivity of landslide detection can
be adjusted according to specific requirements by modifying the parameters for
region merging and filtering, as well as the area threshold.

5 Experiment

5.1 Point cloud registration

Dataset. We chose to evaluate the performance of our method on the outdoor
KITTI dataset. KITTI odometry is an outdoor autonomous driving dataset,
which contains 11 sequences. Following [14, 28|, we use sequences 0~5 for train-
ing, 6~7 for validation and 8~10 for testing. In addition, we refined the ground-
truth pose by ICP following the official setting [1, 14].

Table 1: Registration results on KITTI odometry.

Model |RTE(cm)| RRE(°)! RR(%)1 Time(s)|
FCCF [5] 9.5 0.30 96.6 5.31
D3Feat [2] 7.2 0.30 99.8 589
SpinNet [1] 9.9 0.47 99.1 103.91
Predator [10] 6.8 0.27  99.8 2.86
CoFiNet [24] 8.2 0.41 99.8 2.64
GeoTransformer [14] 7.4 0.27 99.8 1.82
SPTransformer (ours) 8.6 0.27 99.8 0.42

Metrics. Following [1,14], We use three metrics to evaluate the performance of
our method. (1) Relative Rotation Error (RRE), the geodesic distance between
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Fig. 3: Qualitative results on the KITTI dataset.

estimated and ground-truth rotation matrices, (2) Relative Translation Error
(RTE), the Euclidean distance between estimated and ground-truth translation
vectors, and (3) Registration Recall (RR), the fraction of point cloud pairs sat-
isfiles RRE<5° and TE<2m:

H
1
RR:EI;H(RREh<2m/\RTEh<5°). (9)

where H is the number of point cloud pairs in KITTI.

Results. We compare our method with the current state-of-the-art algorithms: [5,
2,1, 10, 14]. The results of the comparative experiments are shown in Table 1. As
can be seen from the table, our method achieve performance on par with the ad-
vanced GeoTransformer [14]. We attain a registration success rate of 99.8%, the
highest among all methods, and the second-lowest registration errors in terms of
RRE and RTE, with accuracy only slightly lower than the computationally in-
tensive GeoTransformer [14]. Notably, our method is RANSAC-free and, due to
the design of the SparsePoint Transformer, is highly efficient with minimal com-
putational overhead. Processing a pair of point clouds takes only 0.1 seconds,
which is just 20% of the time required by [14]. The qualitative experimental
results of our method on the KITTI dataset are shown in Figure 3. Our method
demonstrates robust registration even in challenging scenarios.

5.2 Landslide detection

Dataset. For the task of Landslide Detection, we utilized a self-constructed
dataset. We employed a DJI L1 LiDAR sensor to collect point cloud data of
a hillside at two different time points. To ensure an adequate number of true
landslide samples, we set the time interval between the two data collection points
to 6 months, allowing for observable changes in the terrain over this period. Data
collection was conducted over two large-scale scenarios, resulting in a total of 80
pairs of valid point cloud data. We name our dataset as Landslide-80.

Metrics. We approach this task as a binary semantic segmentation task for
distinguishing between landslide and non-landslide regions. Therefore, for evalu-
ating Landslide detection, we selected standard semantic segmentation metrics,
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Table 2: Experimental results of landslide detection.

Model | mloU 1 OA 71 mAP 1
Segmentation-based method

RangeNet [13] 41.9 59.2 45.0

SalsaNext [6] 43.2 66.2 46.0

Registration-based method

SpinNet [1] 76.2 82.9 77.9
GeoTransformer [14] 57.9 66.8 62.3
SPTransformer (ours) 83.1 93.2 85.2

(a) Original scene (b) Registration result (c) Landslide detection result

Fig. 4: Qualitative results of landslide detection. The landslide areas are visual-
ized in blue.

including mean Intersection over Union (mloU), Overall Accuracy (OA), and
mean Average Precision (mAP).

Results. For the baseline comparison in our experiments, we selected two cat-
egories of algorithms. The first category includes semantic segmentation meth-
ods:RangeNet [13],SalsaNext [6], while the second category consists of registra-
tion error-based methods: SpinNet [1], GeoTransformer [14]. The comparison
results are presented in Table 2. Our method belongs to registration error-based
methods. The visualization results of the landslide detection are shown in Fig-
ure 4.

As observed from the table, the registration error-based methods signifi-
cantly outperform the semantic segmentation methods. This superior perfor-
mance can be attributed to the lack of sufficient data for adequately training
the semantic segmentation models, which results in poor generalization perfor-
mance. In contrast, registration error-based methods can be pre-trained on large
public datasets and then fine-tuned on the actual dataset, leading to better
generalization. Additionally, the registration error-based approach offers a more
straightforward and effective solution for this specific task. Moreover, our pro-
posed method achieved the best performance across multiple metrics: mIOU,
OA, mAP, demonstrating both efficiency and accuracy in landslide detection.
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6 Conclusion

In this work, we introduced the SparsePoint Transformer, a novel point cloud
registration framework that addresses the limitations of existing methods by
achieving a superior balance between accuracy and computational efficiency. By
directly applying an attention mechanism to sparse points, our approach sig-
nificantly enhances processing speed without compromising on accuracy. The
inclusion of a cascaded feature aggregation encoder further improves the con-
textual understanding of point clouds, resulting in more precise registration.
To tailor this framework for landslide detection, we developed the PCR4LD
pipeline. This extension integrates effective solutions for mitigating vegetation
interference, ensuring that environmental factors do not compromise detection
accuracy. The pipeline also incorporates ICP-based pose refinement, which fine-
tunes the alignment of point clouds, leading to more reliable detection outcomes.
Finally, region merging and filtering techniques are applied to isolate and iden-
tify landslide-affected areas accurately. Our method was extensively evaluated
on both the public KITTI dataset and real-world landslide detection tasks. The
results demonstrate that our approach not only achieves state-of-the-art per-
formance in terms of registration accuracy but also significantly reduces com-
putational overhead, with processing times an order of magnitude faster than
competing methods. Additionally, in practical applications, our method outper-
forms existing techniques by a substantial margin, particularly in challenging
scenarios. These findings validate the potential of the SparsePoint Transformer
and PCRA4LD frameworks as robust solutions for efficient and accurate point
cloud registration and landslide detection in real-world settings.
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