
ASG-SLAM: An Adaptive
Real-Time Visual Dynamic SLAM Based on

Semantic Information and Geometric Constraints

Yun-Cong Ge1,3,4, Chun-Yang Zhou1,3,4, and Dan Chen2,3,4,
and Zhen-Tao Liu2,3,4,⋆

1 School of Future Technology, China University of Geosciences,
Wuhan 430074, China

2 School of Automation, China University of Geosciences, Wuhan 430074, China
3 Hubei Key Laboratory of Advanced Control and Intelligent Automation for

Complex Systems, Wuhan 430074, China
4 Engineering Research Center of Intelligent Technology for Geo-Exploration,

Ministry of Education, Wuhan 430074, China

Abstract. Simultaneous Localization and Mapping (SLAM) is a core
technology in the fields of autonomous driving and robotic navigation,
and has made significant progress in recent years. However, conventional
SLAM systems generally assume a static environment, which limits their
practical application in dynamic real-world scenarios. To address the is-
sues of pose estimation and map construction in dynamic environments
by conventional SLAM, a novel real-time dynamic visual SLAM system
(ASG-SLAM) is proposed in this paper. This system integrates advanced
semantic segmentation models and geometric constraint methods to iden-
tify potential moving objects. It also utilizes prior semantic information
to construct a motion probability grading model for objects, allowing
the system to dynamically adjust its feature extraction strategy. These
innovations provide ASG-SLAM with significant advantages in terms of
localization accuracy, computational cost, and robustness. The system is
evaluated on public datasets, and the results show that our method signif-
icantly improves both localization accuracy and computational efficiency
compared to current state-of-the-art dynamic visual SLAM systems.

Keywords: Visual simultaneous localization and mapping (SLAM) ·
dynamic environment · instance segmentation · object detection

1 Introduction

Simultaneous Localization and Mapping (SLAM) has widespread applications
in fields such as robotic navigation, augmented reality, and autonomous driving.
SLAM technology enables robots or automatic systems to perform localization
and map construction simultaneously in unknown environments using only data

⋆ Corresponding author, E-mail: liuzhentao@cug.edu.cn



2 Y. Ge et al.

streams from their own sensors. Visual SLAM, which primarily uses camera sen-
sors, has received extensive attention from researchers in recent years due to
the low power consumption, low cost, small size, and high integration of visual
sensors. The rich information contained in images is not only suitable for the
operation of SLAM systems themselves but also supports vision-based appli-
cations such as semantic segmentation and object detection. Advanced visual
SLAM systems, such as ORB-SLAM2 [1] and LSD-SLAM [2], and others [3],
[4]. have achieved impressive performance.

The application of visual SLAM algorithms in reality is often limited by their
fundamental assumption of static environments. When the system operates in
scenes containing a large number of dynamic objects, conventional methods can
fail due to feature points on dynamic objects, leading to feature association
failures. This not only significantly increases the error in pose estimation but
may also affect the stability of the system. For example, ORB-SLAM2 [1] often
encounters failures when dealing with the highly dynamic TUM RGB-D Dynami-
cObjects dataset [5], leading to operational failures. This challenge indicates that
the design of visual SLAM algorithms needs to take dynamic environmental fac-
tors into more consideration to ensure robustness and practicality in real-world
scenarios such as service robots [6], autonomous driving, and augmented/virtual
reality (AR/VR).

In recent years, many researchers have developed various algorithms to en-
hance the performance of SLAM systems in dynamic environments. These al-
gorithms primarily focus on the detection and exclusion of dynamic objects.
DynaSLAM [7] utilizes multi-view geometry techniques [9] to assist the Mask R-
CNN [8] instance segmentation network, achieving more precise image segmen-
tation and effectively detecting and repairing the background around moving
objects in images. DS-SLAM [10] combines the SegNet [11] semantic segmen-
tation network with optical flow technology to remove dynamic feature points
from images. Additionally, YOLO-SLAM [12] integrates the YOLOv3 [13] ob-
ject detection network to preliminarily identify dynamic objects in the scene
and excludes feature points within these objects’ range by combining with the
RANSAC [14] method. SG-SLAM [15] further identifies dynamic objects by com-
bining the SSDlite [16] object detection network with epipolar constraint tech-
nology.

To address the challenges posed by dynamic objects to SLAM algorithms,
this paper introduces a visual SLAM method designed specifically for the re-
moval of dynamic objects (ASG-SLAM). ASG-SLAM utilizes semantic informa-
tion and geometric constraint methods to identify potential moving objects. It
also employs prior semantic information to establish a motion probability grading
model, allowing the system to adaptively adjust its feature extraction strategy.
These methods alleviate the impact of dynamic objects within the visual SLAM
system, thereby enhancing the system’s localization accuracy and robustness
in complex dynamic environments to meet the operational needs of robots in
complex scenarios. Figure 1 shows an overview of the ASG-SLAM system.

The main contributions of this paper are summarized as follows:
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– In this paper, we have integrated real-time object detection and image seg-
mentation technologies using YOLOv8 into the ORB-SLAM2 [1] framework,
introducing a parallel instance segmentation thread to generate basic se-
mantic information of potential dynamic objects in the scene in real-time.
Additionally, geometric constraint methods have been incorporated into the
existing feature extraction thread to improve accuracy. This system is capa-
ble of achieving high precision and robustness in real-time visual SLAM in
dynamic environments.

– A motion probability grading model is proposed in this paper, which is drawn
on real-world experience by assigning different prior motion probabilities to
objects of different semantic types. When potentially moving objects con-
stitute a significant proportion of the environment, the system adjusts its
feature extraction strategy, specifically removing feature points from objects
with high motion probabilities. This method significantly enhances the ro-
bustness and accuracy of the system in dynamic scenes.

– We evaluated the performance of ASG-SLAM on the TUM RGB-D Dynam-
icObjects dataset [5]. The comparison results demonstrate that ASG-SLAM
significantly outperforms ORB-SLAM2 [1] in high dynamic environments,
both in terms of pose estimation accuracy and system robustness. Its per-
formance also surpasses other leading visual dynamic SLAM systems.

The structure of the remaining sections of this paper is as follows. Section 2
elaborates on the framework of the entire SLAM system, explaining how dynamic
objects are detected and an adaptive feature extraction strategy is implemented.
Section 3 rigorously tests the performance of ASG-SLAM, demonstrating the ef-
fectiveness and accuracy of the system. Section 4 concludes with a brief summary
and discusses future research plans.

2 Methodology

This section provides a detailed introduction to the framework of the ASG-
SLAM system, covering four aspects. First, we present an overview diagram of
the ASG-SLAM system. Second, we briefly introduce the design of the real-time
instance segmentation network thread based on YOLOv8 within ASG-SLAM.
Next, we describe a dynamic point exclusion method based on motion consis-
tency detection. Finally, we demonstrate how to construct a motion probability
grading model and design a strategy for the exclusion of dynamic feature points.

2.1 Framework of ASG-SLAM

The ASG-SLAM system is based on the existing ORB-SLAM2 [1] framework,
seamlessly integrating the high-performance SLAM capabilities of ORB-SLAM2 [1]
with a real-time instance segmentation thread and dynamic feature point exclu-
sion thread based on YOLOv8. This system helps robots maintain good pose
estimation performance in dynamic environments and complete the construction
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Fig. 1: Overview of the ASG-SLAM framework: the original RGB images simul-
taneously enter the feature extraction and instance segmentation threads. After
excluding dynamic features, pose estimation is performed, and point cloud maps
are constructed using depth images.

of dense point cloud maps. During operation, two main threads run in parallel:
the feature extraction thread and the instance segmentation thread. The overall
framework is illustrated in Figure 1.

The feature extraction thread takes RGB images as input, responsible for es-
timating the camera pose and deciding whether to insert keyframes. It employs
advanced methods to cope with dynamic environments, including ORB feature
extraction and matching, capturing feature point movements between consec-
utive frames using optical flow pyramid techniques, obtaining matched feature
point pairs between previous and subsequent frames, and estimating the current
fundamental matrix using the random sample consensus method. It then uses
epipolar constraints to identify and exclude dynamic feature points.
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Simultaneously, the real-time instance segmentation thread based on YOLOv8
performs instance segmentation on RGB images and obtains semantic informa-
tion. By the judgment of a motion probability model and considering the avail-
able number of static feature points, the most likely moving objects in the image
are identified and masks are created. These masks then collaborate with geo-
metric constraint methods to minimize dynamic features to the greatest extent
possible. Both parallel threads work simultaneously to construct a semantically
rich map.

2.2 Instance Segmentation Based on YOLOv8

In the fields of object detection and instance segmentation, the YOLOv8 model
has significantly enhanced efficiency and accuracy through its innovative archi-
tectural design. This model adopts a one-stop prediction strategy, dividing the
image into multiple grids and predicting the category, location, and segmenta-
tion mask of objects within each grid. This approach optimizes processing speed
and enhances prediction accuracy. The architecture of YOLOv8 is divided into
two parts: the Backbone network based on Darknet and the Head section.

The Darknet network is a lightweight structure designed for speed optimiza-
tion, effectively extracting image features through a combination of convolutional
and pooling layers. YOLOv8 further incorporates residual connections and skip
connections, which not only facilitate deep information transmission but also en-
hance the detection capabilities for small-sized targets. The Head section intro-
duces attention mechanisms and multi-scale feature fusion. The attention mech-
anism adaptively adjusts the distribution of feature map weights, enhancing the
model’s focus on key information and thereby improving prediction accuracy.
Multi-scale feature fusion enhances the model’s perception of targets of various
sizes by combining features from different levels, which is crucial for instance
segmentation in complex scenes.

During the training phase, YOLOv8 adopts a stepwise strategy: initially
performing object detection to generate candidate boxes, then using these boxes
to produce and optimize segmentation masks during the instance segmentation
stage. This method not only improves training efficiency but also optimizes the
model’s performance in practical applications. YOLOv8 has broad application
prospects in fields such as image processing and machine learning.

2.3 Motion Consistency Detection

Regarding the geometric constraint methods, we have employed a detection
method based on motion consistency to identify dynamic feature points in im-
ages. The procedure is performed as follows: First, we utilize optical flow pyra-
mid technology to capture the movement of feature points between consecutive
frames by analyzing images across multiple scales. This allows us to acquire
matched feature pairs between the current and previous frames. We discard pairs
located within potential moving objects or at the image edges. Subsequently,
we process the remaining matched pairs using the Random Sample Consensus
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(RANSAC) [14] method to estimate the current fundamental matrix. Using this
fundamental matrix, we calculate the epipolar lines for the matched pairs in the
current frame. Lastly, we evaluate whether the distance from the matched points
to the epipolar lines in the current frame falls below a predefined threshold. If it
is below the threshold, the point is considered stationary; otherwise, it is deemed
to be moving.

Figure 2 provides a diagram of epipolar geometric constraints, where P repre-
sents a point in three-dimensional space, O1 and O2 represent the camera centers
of two frames, l1 and l2 represent the epipolar lines, and p1 and p2 represent the
matched points in the previous and current frames, respectively. According to
[9], The fundamental matrix F can be calculated by

pT2 Fp1 = 0 (1)

The epipolar line l2 can be calculated using

l2 = FP2 = F

u2

v2
1

 (2)

Fig. 2: Epipolar Constraints.

2.4 Motion Probability Grading Model

Relying solely on semantic information extracted from images by instance seg-
mentation networks to determine the static or dynamic nature of objects may not
always be reliable. For example, a person standing still is stationary, but becomes
dynamic when they start moving. To address this challenge, this paper proposes
a motion probability grading model. This model assigns different prior motion
probabilities to objects of various semantic categories based on real experience,
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rather than simply classifying them as static or dynamic. Based on everyday
observations, we categorize the labels provided by the COCO dataset [17] into
six categories, each sorted by the likelihood of motion.

Fig. 3: Probabilistic motion grading model: Different objects are associated with
different motion probabilities. This model balances maintaining a sufficient num-
ber of feature points and removing dynamic features.

As shown in Figure 3, we have categorized objects as follows: The first cat-
egory includes sturdy public facilities; the second category comprises common
household and office items; the third category involves various types of trans-
portation vehicles, such as buses and motorcycles; the fourth category consists of
personal belongings; the fifth category includes humans; and the sixth category
encompasses animals such as birds and cats. The feature points in the image are
assigned prior motion probabilities based on the semantic classification masks
to which they belong.

In conjunction with the motion probability model, we have designed a method
aimed at addressing the issue of system tracking failure due to a lack of feature
points when there are many feature points on potentially moving objects in the
image. Initially, we define the number of static feature points in the current
frame as m and the total number of feature points as n, then the ratio δ of the
two can be calculated using

δ =
m

n
(3)

We can set a threshold δ1 based on the actual conditions of the environment
in which the system operates. If the proportion of static feature points available
in the current frame is below the threshold δ1, feature points that were excluded
from potentially moving objects are progressively restored in order of increas-
ing motion probability until the proportion of static feature points reaches or
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exceeds δ1. Thanks to the efficient parallel thread design, this method can be
implemented in a very short time after instance segmentation is completed. By
setting an appropriate δ1, a balance can be found between maintaining a suffi-
cient number of feature points and removing dynamic feature points, significantly
enhancing the system’s robustness.

3 Experiments and Analysis

(a) (b)

(c) (d)

Fig. 4: Motion object feature point rejection flowchart:(a) Distribution of ORB
feature points extracted by the tracking thread; (b) Semantic mask image ob-
tained from the instance segmentation network; (c) Final mask image derived
from the instance segmentation network, geometric constraints, and the prob-
abilistic motion model; (d) Distribution of ORB feature points after dynamic
features are excluded by the ASG-SLAM system.

In this section, we evaluate the performance of ASG-SLAM in dynamic en-
vironments using the publicly available TUM RGB-D dataset [5] from the Tech-
nical University of Munich. This dataset includes multiple dynamic sequences in
which the scenes contain a rich array of potentially moving objects, with these
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objects occupying more than half of the image area, presenting significant chal-
lenges for visual SLAM systems. This experiment conducts a rigorous test of the
accuracy and robustness of our proposed SLAM system.

All the experiments in this study were conducted on a local laptop equipped
with an AMD Ryzen 7 5800H CPU, 16GB RAM, and a GeForce RTX 3060
graphics card with 6GB of VRAM.

3.1 Experiment on Eliminating Potentially Dynamic Objects

To evaluate the effectiveness of ASG-SLAM in excluding dynamic feature points,
we conducted Experiment 1. Figure 4 (a) illustrates the scenario where two
pedestrians are considered potential dynamic objects, showing the numerous
feature points extracted by the conventional ORB-SLAM2 [1] system on these
individuals. Figure (b) presents the semantic mask image obtained by applying
the YOLOv8 instance segmentation network. Objects with a high activity proba-
bility, such as the seated and standing individuals, are marked with an orange-red
mask, while objects with a low activity probability, such as the computer and
keyboard, are marked with a blue mask. Figure (c) shows the integration of in-
stance segmentation, geometric constraints, and the motion probability model by
the system. The motion probability model recovered potential dynamic feature
points on the computer and keyboard, identified the two high-motion proba-
bility pedestrians, and generated the final mask image. Figure (d) displays the
distribution of ORB feature points in the ASG-SLAM system after removing
the dynamic feature points, clearly showing the removal of feature points from
the high-activity probability individuals while retaining the feature points on
the low-motion probability computer and keyboard, supporting subsequent pose
estimation and map construction.

3.2 Performance Evaluation in Dynamic Environments

This study conducted Experiment 2 on the TUM RGB-D dataset [5], which in-
volved the following dataset sequences: fr3_walking_xyz, fr3_walking_static,
fr3_walking_rpy, fr3_walking_half, and fr3_sitting_static. These sequences
captured scenes of walking and sitting. The dynamics of the scenes are indicated
by the labels xyz, static, rpy, and half, representing different camera movement
patterns along various axes.

To quantitatively evaluate the performance of the algorithm, we employed
the Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) metrics [5].
ATE assesses the global consistency of the trajectory, while RPE focuses on the
translational and rotational drift of the algorithm over time.We conducted com-
prehensive tests on the performance of ASG-SLAM using the fr3_walking_xyz
sequence. Figure 5 (a) presents the trajectory of the SLAM system in the xy
plane, while Figure 5 (b) shows the trajectory performance along the xyz coor-
dinate axes. Figure 6 (a) illustrates the ATE plot, where the gray dashed line
represents the ground truth reference trajectory, and the colored solid lines de-
pict the estimated poses by the SLAM system. Figure 6 (b) displays the ATE
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(a) (b)

Fig. 5: (a)The trajectory plot in the xy plane.(b)The trajectory plot along the
xyz coordinate axes.

evaluation curve. The results indicate that ASG-SLAM has a low trajectory error
and did not experience tracking loss during the testing process.

(a) (b)

Fig. 6: (a)The ATE trajectory plot.(b)The ATE plot.

To further evaluate the performance of ASG-SLAM, we tested five visual
SLAM systems on the selected sequences. These systems include ORB-SLAM2 [1],
which excels in static environments, and the state-of-the-art dynamic SLAM so-
lutions Dyna-SLAM [7], DS-SLAM [10], and YOLO-SLAM [12], all of which are
built on the ORB-SLAM2 [1] framework. We calculated the Root Mean Square
Error (RMSE) and Standard Deviation (S.D.) of the Absolute Trajectory Error
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(ATE) and Relative Pose Error (RPE) [5]for all dataset sequences. The results
are presented in Tables 1, 2, and 3. The best performance for each evaluation
metric is highlighted in bold.

From the data in Tables 1 to 3, it is evident that ASG-SLAM significantly
outperforms ORB-SLAM2 [1] in terms of Absolute Trajectory Error (ATE) and
Relative Pose Error (RPE) [5], achieving an overall improvement in localiza-
tion performance by an order of magnitude. Compared to DynaSLAM [7], DS-
SLAM [10], and YOLO-SLAM [12], ASG-SLAM only slightly underperforms
DynaSLAM in the ATE for the fr3_walking_static sequence, while maintaining
a leading position in all other dataset sequences.

Table 1: Analysis of absolute trajectory error (ATE[m]) metric.
Sequences ORB-SLAM2 DynaSLAM DS-SLAM YOLO-SLAM ASG-SLAM

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3_w_x 0.7521 0.3759 0.0164 0.0086 0.0247 0.0161 0.0146 0.0070 0.0130 0.0063
fr3_w_s 0.3900 0.1602 0.0068 0.0032 0.0081 0.0036 0.0073 0.0035 0.0071 0.0034
fr3_w_r 0.8705 0.4520 0.0354 0.0190 0.4442 0.2350 0.2164 0.1001 0.0325 0.0171
fr3_w_h 0.4863 0.2290 0.0296 0.0157 0.0303 0.0159 0.0283 0.0138 0.0256 0.0134
fr3_s_s 0.0087 0.0043 0.0108 0.0056 0.0065 0.0033 0.0066 0.0033 0.0062 0.0031

Table 2: Analysis of translational relative pose error (RPE[m]) metric.
Sequences ORB-SLAM2 DynaSLAM DS-SLAM YOLO-SLAM ASG-SLAM

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3_w_x 0.4124 0.2684 0.0217 0.0119 0.0333 0.0229 0.0194 0.0097 0.0117 0.0068
fr3_w_s 0.2162 0.1962 0.0089 0.0044 0.0102 0.0048 0.0094 0.0044 0.0071 0.0040
fr3_w_r 0.4249 0.3166 0.0448 0.0262 0.1503 0.1168 0.0933 0.0736 0.0346 0.0174
fr3_w_h 0.3550 0.2810 0.0284 0.0149 0.0297 0.0152 0.0268 0.0124 0.0199 0.0102
fr3_s_s 0.0095 0.0046 0.0126 0.0067 0.0078 0.0038 0.0089 0.0044 0.0052 0.0026

Table 3: Analysis of rotational relative pose error (RPE[deg]) metric.
Sequences ORB-SLAM2 DynaSLAM DS-SLAM YOLO-SLAM ASG-SLAM

RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D. RMSE S.D.
fr3_w_x 7.7432 4.9895 0.6284 0.3848 0.8266 0.5826 0.5984 0.3655 0.4338 0.2228
fr3_w_s 3.8952 3.5095 0.2612 0.1259 0.2690 0.1182 0.2623 0.1104 0.2080 0.0964
fr3_w_r 8.0802 5.9499 0.9894 0.5701 3.0042 2.3065 1.8238 1.4611 0.6077 0.2826
fr3_w_h 7.3744 5.7558 0.7842 0.4012 0.8142 0.4101 0.7534 0.3564 0.5806 0.3136
fr3_s_s 0.2881 0.1244 0.3416 0.1642 0.2735 0.1215 0.2709 0.1209 0.1980 0.0884

Table 4 presents the inference time results of the deep learning network
models and the hardware platforms used in the experiments. In these experi-
ments, ASG-SLAM’s instance segmentation network demonstrates excellent per-
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formance, with an average inference speed of 23 milliseconds per image, signifi-
cantly faster than the segmentation speeds of other SLAM systems designed for
dynamic environments.

Table 4: Time analysis

Systems Neural Average Inference Hardware
Network Time Per Frame (ms) Platform

DS-SLAM SegNet 37.57 Intel i7, P4000
Dyna-SLAM Mask R-CNN 195 Nvidia Tesla M40
ASG-SLAM YOLOv8-seg 22.88 AMD R7 5800H,RTX 3060

The research results indicate that in highly dynamic environments, ASG-
SLAM is capable of maintaining low levels of Absolute Trajectory Error (ATE)
and Relative Pose Error (RPE) [5], significantly outperforming conventional vi-
sual SLAM algorithms such as ORB-SLAM2 [1]. Additionally, compared to most
advanced SLAM systems designed for dynamic scenes, such as DynaSLAM [7],
DS-SLAM [10], and YOLO-SLAM [12], ASG-SLAM not only demonstrates su-
perior performance but also maintains higher efficiency.

4 Conclusion

A novel SLAM system named ASG-SLAM is introduced in this paper, designed
to minimize the interference of dynamic objects on localization.Based on ORB-
SLAM2 [1], ASG-SLAM features parallel instance segmentation and tracking
threads. We integrate an instance segmentation network based on YOLOv8 and
geometric constraints to acquire rich semantic information from the environment
and effectively eliminate feature points on potential dynamic objects. Addition-
ally, we have developed a motion probability grading model, allowing the system
to balance between maintaining a sufficient number of feature points and remov-
ing dynamic ones. These innovative designs enhance the robustness and accuracy
of the system in dynamic scenes. Experimental results demonstrate that ASG-
SLAM significantly surpasses conventional methods in accuracy and robustness
within complex dynamic environments and exhibits excellent performance in im-
age inference speed of the segmentation network. Despite these advancements,
ASG-SLAM still requires improvements. In the future, we plan to introduce
advanced techniques such as reinforcement learning to aid the system’s localiza-
tion and mapping, enhancing the autonomous navigation capabilities of robots
in unknown and extreme environments.
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