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Abstract. Wheat plays a vital role as one of China's major grain crops, and 
quality identification through wheat sampling tests is crucial in various aspects 
of wheat production, circulation, and consumption. Nevertheless, the accuracy 
of the current wheat detection algorithms are rather low, and the issues of 
missed detections and false positives are prone to occur. To address and im-
prove these problems, this study proposed an enhanced wheat grain detection 
algorithm called YOLOv8n-wheat, based on the YOLOv8 target detection algo-
rithm. Firstly, the performance of the model in learning complex features was 
enhanced by incorporating deformable convolution within the backbone net-
work. Secondly, the attention mechanism CBAM was integrated, combining the 
channel attention module and the spatial attention module to enhance the net-
work's representation capability. Lastly, the small target detection head was 
modified to fuse shallow feature information with deeper feature information, 
thereby enhancing the model's sensitivity to small targets. Experimental tests 
were conducted to evaluate the effectiveness of the proposed YOLOv8n-wheat 
grain detection algorithm. The results demonstrated an accuracy of 90.5%, a re-
call of 89.4%, mAP@0.5 of 0.708, and mAP@0.5:0.95 of 0.560. The enhanced 
accuracy of the proposed algorithm establishes its practicality and its potential 
application in wheat grain detection. 

Keywords: YOLOv8, Wheat Kernel Detection, Deformable Convolutional 
Networks, Attention Mechanism, Feature Extraction. 

1 Introduction 

According to statistics, in 2023, China's wheat cultivation covered approximately 
23,627.2 thousand hectares, with a total wheat output of 136,590,000 tonnes, cement-
ing its position as the third largest grain crop in the country. Wheat finds extensive 
applications in food, feed, and various industries. It is a nutritious crop abundant in 
carbohydrates, vitamins, dietary fiber, and protein. Wheat is commonly used in the 
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production of flour, bread, pasta, and numerous other food products. As one of Chi-
na's major food crops, the sampling and testing of wheat for quality identification play 
a crucial role in wheat production, distribution, and consumption. The national stand-
ard for wheat, GB1351-2023, released on May 23, 2023, classifies wheat grains into 
categories such as sound kernel, broken kernel, sprouted kernel, diseased kernel, in-
sect-bored kernel and useless material. Ensuring comprehensive quality testing for 
unsound wheat kernel holds immense practical and strategic significance for the 
smooth development of China's economy, while also safeguarding wheat quality and 
food safety in the country. 

The rapid advancement of deep learning in recent years has propelled progress 
across various fields, leading to the emergence of machine vision combined with ma-
chine learning and deep learning as a promising direction for wheat grain detection. 
Several scholars have utilized deep learning techniques to detect wheat grains. For 
instance, C. Hao et al. employed a convolutional neural network to construct a feature 
pyramid, enabling fusion of imperfect grain features and enhancing recognition accu-
racy [1]. A. Singh et al. utilized models like VGG16, AlexNet, and ResNet to extract 
features and classify wheat grains for recognition [2]. K. Laabassi et al. identified 
wheat grains using convolutional neural networks in conjunction with transfer learn-
ing [3]. Y. Dai et al. applied the MobileNet V2 network model to detect wheat ru-
deralis grains [4]. Q. Hong et al. combined YOLOv4 and MobileNet to develop a 
model for detecting wheat ruderal grains, achieving promising results [5]. Z. Zhang et 
al. employed the YOLOv5 algorithm as a base model and integrated three attention 
mechanisms to enhance network representation and improve wheat detection accuracy 
[6]. K. Han et al. combined the YOLOv5 algorithm with their own EfficientNet-b2-W 
classification network cascade to create a multi-seed classification model for wheat, 
accompanied by system software for convenient user implementation [7]. A. Yasar et 
al. proposed a combination of CNN and transfer learning to enhance wheat detection 
accuracy [8]. 

While more scholars are adopting deep learning methodologies for wheat grain de-
tection, existing algorithms for wheat grain recognition still suffer from issues such as 
low accuracy and susceptibility to missed detections and false positives. To address 
and improve these challenges, this study focused on optimizing and enhancing the 
novel YOLOv8n target detection algorithm. The network model was improved by 
incorporating deformable convolution, embedding the attention mechanism CBAM, 
and modifying the target detection head. The objective was to enhance the accuracy 
of wheat detection and recognition. 

2 Related Work 

2.1 YOLOv8n Target Detection Algorithm 

The YOLO family represents a prominent class of one-stage target detection algo-
rithms. J. Redmon et al. initially proposed the YOLOv1 algorithm in 2016 [9]. 
Through continuous development and iteration, subsequent models such as 
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YOLO9000, YOLOv3, and YOLOv4 were introduced, incorporating the strengths of 
their predecessors. In 2023, Ultralytics presented the YOLOv8 algorithm, which gar-
nered significant attention due to its exceptional speed and accuracy [10-12]. The 
YOLOv8 algorithm demonstrates remarkable performance in target detection tasks 
and has achieved impressive results on various benchmark datasets. Furthermore, the 
YOLOv8 algorithm introduces novel ideas and methodologies that provide valuable 
insights for future research in target detection algorithms. The YOLOv8 framework 
encompasses five network model specifications: n, s, m, l, and x, each offering a dif-
ferent trade-off between complexity, detection accuracy, training difficulty, and de-
tection speed. The YOLOv8n model, being the smallest and fastest, imposes lower 
hardware arithmetic requirements. The YOLOv8n network comprises three key com-
ponents: the Backbone network, the Neck network, and the detection Head network, 
as depicted in Fig. 1 below. 

 
Fig. 1. YOLOv8n model network architecture diagram. 

In this study, we proposed improvements and optimizations to YOLOv8n to enhance 
the model detection accuracy. We employed three strategies: backbone network using 
deformable convolutional DCN, inclusion of the attention mechanism CBAM, and 
modifying the target detection head. 

2.2 Backbone Network using Deformable Convolution 

DCN (Deformable convolutional networks) is an improved convolution operation 
proposed by J. Dai et al. to enhance the perception of convolutional neural networks 
when dealing with images containing deformable targets or complex scenes [13]. 
Unlike traditional convolutional operations that are applied to fixed sample points, 
deformable convolution enables the network to dynamically adapt and perceive de-
formation information in images by learning deformable sample point locations. The 
main concept behind deformable convolution is the introduction of learnable offsets 
to adjust the sampling position of the convolution kernel on the input feature map. 
These offsets are learned during training and adaptively adjusted based on the content 
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and contextual information of the input image. Deformable convolution allows each 
convolution kernel's sampling position to be dynamically adjusted to better accom-
modate the deformation of the target and the complexity of the background. The key 
operations involved in deformable convolution are offset computation and feature 
interpolation. In offset computation, deformable convolution predicts the offset for 
each pixel point based on the content of the input feature map by utilizing an offset 
regression network. During feature interpolation, the sampled points on the input 
feature map are interpolated based on the learned offsets to obtain new sampled point 
locations, and then the convolution operation is performed. Fig. 2 illustrates a com-
parison between conventional convolution and deformable convolution. 

 
Fig. 2. Deformable convolutional networks. The pink dots represent conventional convolution, 
while the blue dots represent deformable convolution. (a) depicts a regular 3x3 convolution 
block, (b), (c), and (d) are deformable convolutions formed by adding offsets to each convolu-
tion kernel based on (a). (c) performs size scaling, and (d) performs a rotation operation. 

In the following equations, ݌଴ denotes any point on the input feature map, ݌௡ repre-
sents each offset within the range of the convolution kernel, in Fig. 3, ܴ  denotes the 
range of values for ݌௡, ݓ(݌௡) denotes the weights, ݌)ݔ଴ +  ௡) represents the value of݌
the element at the corresponding position in the feature map, ݕ(݌଴)  denotes the result 
of the convolution operation, and ∆݌௡ denotes the offset of deformable convolution. 
Equation (1) represents the formula for regular convolution, while equations (2) and 
(3) represent the formulas for deformable convolution. Deformable convolution intro-
duces an offset for each point, and the operation process may result in fractional val-
ues that do not correspond to exact points on the input feature map. Typically, this 
problem is resolved through bilinear interpolation. 

 

 
Fig. 3. Illustrates the range of values for R. 

(଴݌)ݕ =෍ (௡݌)ݓ ∗ ଴݌)ݔ + (௡݌
௣೙∈ோ

(1) 

ܴ = {(−1,−1), (−1,0), … , (0,0), … , (1,0), (1,1)} (2) 
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(଴݌)ݕ =෍ (௡݌)ݓ ∗ ଴݌)ݔ + ௡݌ + (௡݌∆
௣೙∈ோ

(3) 

Deformable convolution, by introducing learnable offsets to adjust the sampling posi-
tions of the convolution kernel, enables the network to better adapt to deformed tar-
gets in images, thereby enhancing target perception and discrimination. It has demon-
strated significant improvements in various computer vision tasks, including target 
detection, semantic segmentation, and pose estimation. Particularly, deformable con-
volution provides more accurate prediction results when dealing with challenging 
scenes involving deformed targets, occlusion, and pose changes. In this study, we 
replaced the conventional convolution in the four C2f modules of the YOLOv8n 
backbone network with deformable convolution to improve the model's performance 
in learning complex features. 

2.3 Attentional Mechanism CBAM 

The attention mechanism is a technique employed to enhance image processing tasks 
by enabling models to dynamically select and focus on task-relevant regions or fea-
tures during image processing. This approach allows models to prioritize task-relevant 
image regions and features, thereby improving the performance of image processing 
tasks such as target detection, image classification, image segmentation, and image 
generation. Attention mechanisms are widely used in computer vision, particularly for 
processing large-sized images or complex scenes, as they provide enhanced represen-
tational capabilities and accuracy. 

CBAM (Convolutional Block Attention Module) is a lightweight attention mecha-
nism proposed by S. Woo et al. [14]. It is primarily used to enhance the performance 
of convolutional neural networks in image processing tasks. The authors integrated 
CBAM into classical structures like ResNet and MobileNet and achieved promising 
results. CBAM focuses on extracting the most important features in an image and 
weighting these features across different spatial and channel dimensions. 

CBAM consists of two main components: the Channel Attention Module and the 
Spatial Attention Module. The Channel Attention Module, depicted in Fig. 4, adap-
tively weights the feature maps of each channel. It captures the global correlation 
between channels by computing global average pooling and global maximum pooling 
for each channel. These pooled features are then passed through two fully connected 
layers, one generating the maximum response for the channel and the other generating 
the average response. Finally, these two responses are summed and normalized using 
a sigmoid function to obtain a channel attention map. This map assigns weights to 
features in the channel dimension, allowing the network to pay more attention to im-
portant channels. Similarly, the Spatial Attention Module, illustrated in Fig. 5, adap-
tively weights the feature map at each spatial location. It captures the global correla-
tion in the spatial dimension by computing the mean and maximum of the feature map 
at each location. The output is then processed by a fully connected layer and sigmoid 
function normalization to obtain a spatial attention map, which directs the network's 
attention to important spatial locations. 
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Fig. 4. CAM schematic diagram. 

 
Fig. 5. SAM schematic diagram. 

By combining channel attention and spatial attention, CBAM weights features in both 
the channel and spatial dimensions, extracting the most representative and important 
features. Fig. 6 presents the schematic diagram of CBAM. This adaptive weighting 
mechanism helps the network better adapt to the characteristics of different images 
and improves the performance of image processing tasks, including image classifica-
tion, target detection, and image segmentation. Additionally, the CBAM module is 
plug-and-play, easily integrating into existing base model networks for end-to-end 
training. In this study, the CBAM attention module was added to both the FPN and 
PAN in the YOLOv8n Neck Network. This integration combined the channel atten-
tion module and the spatial attention module to enhance the model network represen-
tation capability, enabling the model to pay more attention to important feature infor-
mation. 

 
Fig. 6. CBAM schematic diagram. 

2.4 Modifying the Target Detection Head 

The Head network of YOLOv8n utilizes three feature maps for prediction, with an 
input image size of 3*640*640. The smallest feature map is obtained by down sam-
pling the original image by 32 times, resulting in a size of 144*20*20. The middle 
feature map is downscaled by 16 times, resulting in a size of 144*40*40. The largest 
feature map is obtained by downsampling the original image by 8 times, resulting in a 
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size of 144*80*80. However, as the down sampled feature maps become deeper, it 
becomes challenging to effectively capture feature information for small targets. To 
address this limitation, a modification to the target detection head in the Head net-
work of YOLOv8n was proposed. 

In this study, the number of down sampling operations was reduced from the origi-
nal 32 times to 4 times, resulting in a feature map size of 144*160*160. By reducing 
the down sampling factor, we retained more detailed information, enabling the model 
to focus better on small targets. This modification enhanced the model's capacity to 
pay attention to the fine-grained features of small targets, thereby increasing sensitivi-
ty and improving detection accuracy. Importantly, this change didn't significantly 
impact the model's complexity, allowing it to remain efficient and accurate even with 
limited computational resources. 

The YOLOv8n-wheat model architecture is presented, as depicted in Fig. 7 below. 
Compared to YOLOv8n, it can be seen that 3 modifications have been made. Se-
quence number 1 indicates that a deformable convolution is used, sequence number 2 
indicates that an attentional mechanism CBAM is embedded, and sequence number 3 
indicates that the target detection header has been modified. 

 
Fig. 7. YOLOv8n-wheat model network architecture diagram. 

3 Experiment and Analysis 

3.1 Data Sets and Experimental Environments 

Using our self-constructed dataset, 2901 images of wheat grains were collected in 
total, as illustrated in Fig. 8. The dataset consisted of the following categories: 553 
images of sound kernel, 498 images of broken kernel, 409 images of insect-bored 
kernel, 519 images of sprouted kernel, 477 images of diseased kernel, and 445 images 
of useless material. Subsequently, the wheat categories in the dataset were randomly 
divided into training, validation, and testing sets in an 8:1:1 ratio.  
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Fig. 8. Schematic diagram of wheat kernels by category. In this figure, (a) shows sound kernel, 
(b) shows broken kernel, (c) shows insect-bored kernel, (d) shows sprouted kernel, (e) shows 
diseased kernel, and (f) shows useless material. 

The dataset underwent several preprocessing steps, including the Mosaic enhance-
ment, random cropping, flipping, scaling, color perturbation, and hybrid enhancement 
techniques. During training, the hyperparameters was set as follows: the input image 
size was set to 640*640, the initial learning rate was 0.001, and the learning rate was 
updated using the cosine annealing algorithm. The batch size was set to 8, the training 
period consisted of 150 epochs, and the optimizer employed was SGD. The experi-
ments were conducted with hardware and software parameter settings as outlined in 
Table 1 below. 

Table 1. Experimental environment settings. 

Options Parametric 
Operating system Ubuntu 18.04.6 LTS (Bionic Beaver) 

CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 
GPU NVIDIA GeForce GTX 1080 Ti 
RAM 64GB 

Memory(GPU) 12GB 
Deep learning frameworks PyTorch 1.10.0 

3.2 Evaluation Indicators 

In this study, the performance of the model was evaluated by using accuracy, recall, 
and mAP (mean Average Precision) as evaluation metrics. The specific formulas for 
these metrics are as follows: 

Accuracy: Accuracy measures the overall correctness of the model's predictions. It 
is calculated by dividing the sum of true positives (TP) and true negatives (TN) by the 
total number of samples (N): 

ܲ =
ܶܲ

ܶܲ + ܲܨ
(4) 
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Recall: Recall, also known as the true positive rate, measures the proportion of posi-
tive samples that are correctly identified by the model. It is calculated as the ratio of 
true positives (TP) to the sum of true positives (TP) and false negatives (FN): 

 

ܴ =
ܶܲ

ܶܲ + ܰܨ
(5) 

 
To assess precision and recall across different confidence thresholds, we established a 
right-angled coordinate system, where the x-axis represents the recall rate (R) and the 
y-axis represents the accuracy (P). The area enclosed by the Precision-Recall (PR) 
curve and the coordinate axis is known as the average precision (AP), which repre-
sents the average precision across all confidence thresholds. The mean of the average 
precision values for all samples in the dataset is referred to as mAP. 

 

ܲܣ = න ݎ݀(ݎ)ܲ
ଵ

଴
(6) 

 

ܲܣ݉ =
∑ ௡(௜)ܲܣ
௜ୀ଴

݊
(7) 

We calculated mAP at an IoU (Intersection over Union) threshold of 0.5, denoted as 
mAP@0.5. This threshold determines the level of overlap required between predicted 
bounding boxes and ground truth boxes for a detection to be considered correct. Addi-
tionally, mAP@0.5:0.95 represents the average mAP across IoU thresholds ranging 
from 0.5 to 0.95 in steps of 0.05. 

3.3 Results 

The YOLOv8n target detection algorithm serves as the base model for the YOLOv8n-
wheat model, incorporating three improvements such as the use of deformable convo-
lutional DCN, the inclusion of the attentional mechanism CBAM, and the replace-
ment of the target detection head. The dataset and experimental environment de-
scribed earlier were utilized, and the experimental results are presented in Table 2. 

Analyzing the table, it is evident that the YOLOv8n-wheat model demonstrates en-
hanced effectiveness in identifying sprouted kernels and useless materials. This im-
proved performance may be attributed to the distinct shape and color characteristics 
exhibited by sprouted kernels and useless materials. On the other hand, the detection 
results for sound kernels and diseased kernels appear to be relatively lower. Further 
examination of the experimental results revealed instances of misclassification, par-
ticularly where sound kernels were misidentified as diseased kernels, and vice versa. 
This misclassification might be attributed to the similarities in shape, color, and tex-
ture characteristics between sound kernels and diseased kernels. Fig. 9 provides a 
visual representation of the actual detection results for each category of wheat grains. 
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Fig. 9. Schematic diagram of the detection effect of wheat grains in each category. 

Table 2. YOLOv8n-wheat experimental results. 

Category Accuracy/% Recall/% mAP@0.5 mAP@0.5:0.95 
sound kernel 86.4 84.9 0.665 0.525 
broken kernel 91.7 90.6 0.710 0.565 

insect-bored kernel 92.3 89.2 0.700 0.555 
sprouted kernel 91.5 89.5 0.715 0.570 
diseased kernel 87.4 87.8 0.680 0.540 
useless material 93.7 94.4 0.735 0.585 

all 90.5 89.4 0.708 0.560 

3.4 Ablation Experiment 

The objective of this study is to introduce three improvements to the YOLOv8n algo-
rithm. To validate the effectiveness of these enhancements, ablation experiments were 
designed and conducted. A total of five experiments were performed, maintaining the 
same dataset, hyperparameters, and experimental environment for each experiment. 
The only variation across the experiments was the algorithm model employed. The 
experimental results are presented in Table 3. "YOLOv8n(DCN)" denotes the case 
where only the regular convolution in the Backbone is replaced with deformable con-
volution. "YOLOv8n-wheat" signifies the utilization of all three proposed improve-
ments, and so forth for the remaining cases. 

Table 3. Ablation experiment results. 

Method DCN CBAM Modifying  
detector head Accuracy/% Recall/% mAP 

@0.5 
mAP 

@0.5:0.95 
YOLOv8n × × × 87.2 86.7 0.683 0.532 

YOLOv8n (DCN) √ × × 88.5 86.8 0.692 0.541 
YOLOv8n (CBAM) × √ × 87.9 87.3 0.689 0.552 
YOLOV8n (Head) × × √ 89.7 88.6 0.691 0.557 
YOLOv8n-wheat √ √ √ 90.5 89.4 0.708 0.560 
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3.5 Comparison Experiment 

A comparison experiment was set up in this study, and YOLOv5n, YOLOX-Tiny, 
YOLOv7-Tiny, and YOLOv8n-wheat were used for performance comparison. The 
data set, hyperparameters and experimental environment of each experiment remained 
the same, only the algorithm model was different. The experimental results are shown 
in Table 4. 

Table 4. Comparison experiment results. 

Method Accuracy/% Recall/% mAP 
@0.5 

mAP 
@0.5:0.95 

Speed 
(ms/img) 

Params 
(M) 

FLOPs 
(B) 

YOLOv5n 81.8 77.9 0.459 0.407 142 1.9 4.5 
YOLOX-Tiny 84.7 83.8 0.494 0.477 193 5.06 6.45 
YOLOv7-Tiny 79.9 81.2 0.442 0.403 89 6.2 3.46 

YOLOv8n 87.2 86.7 0.683 0.532 247 3.2 8.7 
YOLOv8n-wheat 90.5 89.4 0.708 0.560 292 4.1 11.4 

 
The YOLOv8n-wheat model demonstrates an accuracy of 90.5%, a recall of 89.4%, 
an mAP@0.5 of 0.708, and an mAP@0.5:0.95 of 0.560. Although the number of 
parameters and computation of YOLOv8n-wheat are increased, and the inference time 
is longer, these are still acceptable. These results indicate that combining these im-
provements significantly enchances the YOLOv8n model's performance. 

4 Conclusions 

In this study, an improved and optimized algorithm, YOLOv8n-wheat, was proposed 
for wheat grain detection based on the YOLOv8 target detection algorithm. The algo-
rithm incorporates several enhancements to enhance its performance. Firstly, the utili-
zation of deformable convolution in the backbone network improves the model's abil-
ity to learn complex features. Secondly, the attention mechanism CBAM is intro-
duced, combining the channel attention module and spatial attention module to en-
hance the model's network representation capability. Lastly, modifications in the tar-
get detection head merge shallow feature information with deeper feature information, 
enhancing the model's sensitivity to small targets. 

Experimental evaluations were conducted to assess the effectiveness of the pro-
posed approach. The results indicate that the YOLOv8n-wheat grain detection algo-
rithm achieves an accuracy of 90.5%, a recall of 89.4%, an mAP@0.5 of 0.708, and 
an mAP@0.5:0.95 of 0.560. These performance metrics represent improvements of 
3.3, 2.7, 2.5, and 2.8 percentage points, respectively, compared to the original 
YOLOv8n algorithm. The proposed algorithm demonstrates high practicality and 
applicability in the field of wheat grain detection. Additionally, this study provides 
valuable insights for enhancing other target detection tasks and serves as a foundation 
for further research and development of detection models with superior performance. 
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