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Abstract.  An improved impedance control method for grinding robots to en-

hance the machining quality of free-form workpieces is proposed. This method 

combines integral sliding mode control with the exponential reaching law to im-

prove the design of impedance control algorithms. Firstly, by leveraging the sys-

tem's impedance parameter model and contact impedance force, the robot's ideal 

impedance trajectory is calculated. Subsequently, an integral sliding mode im-

pedance control method, utilizing the exponential reaching law, is developed to 

accurately follow the impedance trajectory. The adoption of the reaching rate can 

mitigate the chattering issue that occurs in sliding mode control. Finally, the sta-

bility of the system is validated using Lyapunov theory, followed by simulations 

and experiments. Simulation and experimental results demonstrate that the pro-

posed method offers superior dynamic and static performance. 

Keywords: grinding robot; impedance control; integral sliding mode; exponen-

tial reaching law. 

1 Introduction 

Grinding is a pivotal processing stage in the intricate production cycle of castings. 

However, traditional manual grinding methods often suffer from inefficiency and re-

duced accuracy, in addition to the widespread issues of excessive noise and dust that 

pose risks to operator health. The use of robots can improve the consistency of grinding 

work and significantly improve the working conditions for frontline workers [1]. Today, 

the extensive use of robotic grinding in industries such as aerospace, shipbuilding, and 

automotive manufacturing highlights its transformative potential. 

The interaction between the grinding tip and the workpiece significantly impacts 

the robot control system's performance and, consequently, the quality of the grinding 

operation. Therefore, this interaction is a crucial consideration in the design of the 

grinding robot controller. Typical interaction control techniques encompass impedance 

control and hybrid force/position control. Impedance control demonstrates excellent 

force control performance, making it widely used in grinding robots. As an illustration, 



in [2], a method for automatically adjusting robot grinding behavior using an imped-

ance model is proposed to address the issues of high labor intensity, inconsistent qual-

ity, and poor safety and hygiene in manual sanding operations, thereby enabling robots 

to operate on uncertain objects with minimal human involvement. In [3], a nonlinear 

impedance control method is introduced for collaborative robot grinding, which suc-

cessfully enhances the stability of the robot grinding force. The authors of [4] propose 

an adaptive variable impedance control algorithm to tackle the constant force control 

issue in flexible grinding processes, achieving the objectives of adjusting system im-

pedance and reducing force tracking deviation. 

The sliding mode control method exhibits excellent robustness and can be used to 

enhance the impedance control performance of robots. Many researchers are investi-

gating the integration of sliding mode and impedance control for various robotic appli-

cations. In [5], a method combining a linear sliding mode with multiple degrees of free-

dom and impedance control is proposed for distributing contact force between a single 

slave robotic arm and several master robotic arms, achieving the goals of maintaining 

MTS stability and obtaining high-precision motion. In [6], a method integrating sliding 

mode and impedance control is presented to address full contact interference in inter-

ferometric autonomous underwater vehicles (I-AUVs), successfully achieving precise 

position and force tracking. The authors of [7] propose a method that combines sliding 

mode and impedance control for fully actuated unmanned aerial vehicles performing 

contact-based aerial manipulation tasks, aiming to reduce chattering and construct a 

robust fault-tolerant motion/force controller. The study in [8] introduces a method com-

bining sliding mode, impedance control, and fuzzy adaptive switching gain for the im-

pedance control of fracture reduction robots, enhancing system robustness. [9] presents 

an integral fuzzy sliding mode impedance control strategy combined with time delay 

estimation for robot-assisted cooperative rehabilitation training problems, aiming to 

suppress impedance errors and eliminate dynamic model nonlinearity and interference. 

In this process, the integral sliding surface, due to the presence of an integral element, 

smooths the dynamic response of the system and effectively suppresses chattering. 

Furthermore, incorporating a reaching law into the design of sliding mode control-

lers can streamline the design process and significantly enhance the dynamic perfor-

mance of the control system[10-12]. For instance, in [13], a method based on the reaching 

law of difference equations with minimum values is applied to discrete-time sliding 

mode control problems, suppressing chattering and limiting the rate of change of sliding 

variables. In [14], an advanced approach law sliding mode control strategy is presented 

for the speed control problem of permanent magnet synchronous motors, accelerating 

convergence speed and reducing chattering. In [15], an enhanced torque sharing func-

tion control method for switched reluctance motors is proposed, utilizing sliding mode 

control with a novel sliding mode reaching law to suppress torque ripple and increase 

approaching speed. 

Based on the above research, we conducted research on impedance control algo-

rithms for grinding robots based on exponential reaching law and integral sliding mode 

surface(ERL-ISMIC). The remainder of this paper is structured as follows: Section 2 

introduces the impedance dynamic model for a grinding robot. Section 3 details the 

integral sliding mode impedance control algorithm based on the exponential reaching 



law.  Section 4 presents the simulation results to verify the effectiveness and perfor-

mance of the proposed method. Section 5 further validates the effectiveness of the in-

tegral sliding mode impedance control method based on the exponential reaching law 

through experimental testing. Section 6 offers the conclusions. 

2 Impedance control model for grinding robots 

To analyze the contact characteristics of the robot end effector, a dynamic equation 

needs to be constructed in the task coordinates using the end effector's position as a 

variable, based on the traditional dynamic model that uses joint positions as variables. 

Considering external disturbances and modeling uncertainties, a typical robot dynamic 

model using joint angles as variables is as follows[16]: 

 ( ) ( , ) ( ) ( , , )D q q C q q G q q q q + + + =  (1) 

where 1, , nq q q R   are the vectors of joint position, velocity, and acceleration, respec-

tively; ( ) n nD q R  is the symmetric positive definite inertia matrix; ( , ) n nC q q R  is 

the Coriolis force and centrifugal force vector; 1( ) nG q R   expresses the nominal 

gravity vector; nR   is the joint torque input vector; and ( , , )q q q  is the disturb-

ance , ( , , ) ( ) ( , ) ( ) dq q q D q q C q q q G q  =  + + + . 

Impedance control aims to regulate the contact force between the grinding robot's 

end effector and the workpiece by controlling its position within the Cartesian coordi-

nate system. Therefore, it is essential to transform the dynamic equation from one that 

uses joint angles as variables to one that employs the end effector position in the Car-

tesian coordinate system as the variable. If l  is the end position vector of the robot, 

which is a function of the joint angles, then the joint angles and the end position satisfy 

the following relationship[17]: 

 
( )

( )

l h q

l J q q

=

=
 (2) 

where ( )J q  is the Jacobian matrix of the robot. 

Assuming the contact force between the end effector of the grinding robot and the 

workpiece is 
reF , the dynamics of the target impedance is[18]: 

 ( ) ( ) ( )c c c reM l l B l l K l l F− + − + − =  (3) 

where 
cl  is the ideal end trajectory and l  is the actual end trajectory, and when there 

is a deviation between the two, relevant forces will be generated; M  is the mass coef-

ficient matrix; B  is the damping coefficient matrix; and K  is the stiffness coefficient 

matrix. 

The dynamic model based on the end position can be established as follows[19]: 



 ( ) ( , ) ( ) ( , , )l l l re l lD q l C q q l G q F q q q F+ + + + =  (4) 

where: 
1( ) ( ) ( ) ( )T

lD q J q D q J q− −= , 

1 1( ) ( )( ( , ) ( ) ( ) ( )) ( )T

lC q J q C q q D q J q J q J q− − −= − , 

( ) ( ) ( )T

lG q J q G q−= , 

( , , ) ( ) ( , , )T

l q q q J q q q q− =  . 

In the actual grinding process, the expected end trajectory 
cl  may be unreachable, 

so it is necessary to obtain the ideal impedance trajectory 
dl  through an impedance 

model. The impedance model is as follows[20]: 

 
rd d c c cedMl Bl Kl F Ml Bl Kl+ + = − + + +  (5) 

3 Integral Sliding Mode Impedance Control Algorithm  

We define the state variable of the end position error of the grinding robot in the 

Cartesian coordinate system as[21]: 

 
de l l= −  (6) 

Then, one has 

 
1( )

d

d l l l l re l

e l l

l D F C l G F−

= −

= − − − − −
 (7) 

We define the integral sliding mode surface as[22] : 

 1 2s c e e c e= + +   (8) 

where  1 2; ;...; ns s s s= , and 
1c  and 

2c  are constants greater than zero. 

Then there are: 

 
1 2

1

1 2( )d l l l l re l

s c e e c e

c e l D F C l G F c e−

= + +

= + − − − − − +
 (9) 

Then we select the law of exponential reaching[23]: 

 sgn( )s s ks= − −  (10) 

where   and k  are positive real constants. 

The design control law is: 



 
1

1 2
ˆ( sgn( ) ) sgn( )l l d l l re l lF D c e l c e s ks C l G F D s D −= + + + + + + + +   (11) 

where ̂   . 

The stability proof is as follows: 

The Lyapunov function is defined as follows[24] : 

 
1

2

TV s s=  (12) 

Then we derive it and substitute Equation (9) to obtain 

 1

1 2( ( ) )T T

d l l l l re lV s s s c e l D F C x G F c e−= = + − − − − − +  (13) 

Substituting control law Equation (11) into Equation (13) yields 

1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1

ˆ( sgn( ) ( sgn( ) ))

ˆ( sgn( ) )

ˆ= +

ˆ+

ˆ+

ˆ+ ( )

T

l l l

T

l l l

T

l l

T

l l

l l

l

V s s ks D D s D

s k s s D D s D

s k s s D s D

s k s s D s D

s k s s D s D

s k s s D













− −

− −

− −

− −

− −

−

= − − −  −

= − − −  −

− −  − 

 − −  − 

= − −  − 

= − −  −

 

Since both   and k  are positive numbers and ̂   , then 0V  . If and only 

if ( ) 0s t = , ( ) 0V t = . When 0V  , 0s  . According to the LaSalle invariant set prin-

ciple[25], when t → , 0s → , 0e→ , the closed-loop control system is asymptoti-

cally stable. Meanwhile, by adjusting the appropriate values of   and k , the speed of 

the system approaching the sliding surface can be increased and the speed of motion in 

sliding mode can be reduced, thereby achieving the goal of improved chattering. 

4 Simulation analysis 

To demonstrate the effectiveness of the proposed method, we use the grinding 

robot as the control object, simplify it into a two-joint model based on the assumptions 

stated in the paper, and conduct simulation verification on the Matlab R2022b platform. 

Considering friction and external disturbances, the dynamic equation of the grind-

ing robot in the Cartesian coordinate system is shown in Equation (4): 

( ) ( , ) ( ) ( , , )l l l re l lD q l C q q l G q F q q q F+ + + + =  

The system parameters of the robot used in the simulation are 



( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

( )

( )
11 2 12 2 11 2 12 2 1 1 2

21 2 22 2 21 2 22 2 2 1 2

,
, , , ,

,

q q C q C q G q q
D q C q q G q

q q C q

D D

D D C q G q q

     
= = =     
     

 

11 2 1 2 3 2

12 2 21 2 2 3 2

22 2 2

11 2 3 2 2

12 1 2 3 1 2 2

21 1 2 3 1 2

22 2

1 1 2 4 1 5 1 2

1 1 2 5 1 2

( ) 2 cos ,

( ) ( ) cos ,

( ) ,

( ) sin ,

( , ) ( )sin ,

( , ) sin ,

( ) 0,

( , ) cos cos( ),

( , ) cos( )

D q m m m q

D q D q m m q

D q m

C q m q q

C q q m q q q

C q q m q q

C q

G q q m g q m g q q

G q q m g q q

= + +

= = +

=

= −

= − +

=

=

= + +

= + 。

 

Among them,  1 2 3 4 5; ; ; ; lm m m m m P p L= + , where P  is the parameter vector of 

the robot itself, 
lp  is the load,  1.66;0.42;0.63;3.75;1.25P = , 0.5lp = , 

1 2 1.5l l= = , and 
2 2

1 2 1 2 1 2; ; ; ;L l l l l l l =   . 

The Jacobian matrix parameters for the relationship between the speed of grind-

ing the endpoint and the angular velocity of the robot joints are 

1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

2 1 2 2 1 21 1 2 1 2 2 1 2

1

1 1 2 1 2 2 1 2 2

sin( ) sin( ) sin( )
( ) ,

cos( ) cos( ) cos( )

cos coscos( ) cos( ) cos( )
( )

sin( ) sin( ) sin( ) s

( ) ( )

l q l q q l q q
J q

l q l q q l q q

l q q l q ql q l q q l q q
J q q

l q l q q l q q l

− − + − + 
=  

+ + + 

− + − +− − + − + 
= + 

− − + − + − 
2

1 2 2 1 2in sin( ) ( )
q

q q l q q

 
 
 + − + 

 

The initial state of the robot end effector in Cartesian coordinates is  0.85;1.1 , 

then we take  sin ;cost t =  and provide the expected end trajectory 

1 cos( ), 1 sin( )cx cyl t l t = − = + . We set the initial state of the robot impedance trajec-

tory and the expected end position as (0) (0), (0) (0)d c d cl l l l= = . In addition, quality 

coefficient matrix  1M diag= , damping coefficient matrix  10B diag= , and stiff-

ness coefficient matrix  50K diag= . 

To validate the effectiveness of the proposed integral sliding mode impedance 

method with the reaching law, a comparative simulation was conducted. The other two 

methods are the linear sliding mode impedance control method (LSMIC) and the inte-

gral sliding mode impedance method without integrating the exponential reaching law. 

The design of the sliding surface for the linear sliding mode impedance control 

method is 
1 1s e e=  + , and the control law is designed as follows: 



 1

1 1 1( ) ( ) tanhSMC l d l d l re

s
F D l e C l e G F Ks 


= + + + + + + +  (14) 

The sliding surface of the integral sliding mode impedance method without inte-

grating the exponential reaching law is 2 3 4s c e e c e= + +  , and the control law is de-

signed as follows: 

 2

* 3 4 3 4 2( ) ( ) tanhl l d l d l re

s
F D l c e c e C l c e c e G F Ks 


= + + + + + + + + +  (15) 

The control law of the integral sliding mode impedance method integrating the 

exponential reaching law adopts Equation (11). The parameters of the linear sliding 

mode controller are    1= 10 , 15 , 1.2, 0.5diag K diag   = = = . The parameters of 

the integral sliding mode controller without integrating the exponential reaching law 

are  3 460, 60, 15 , 1.2, 0.5c c K diag  = = = = = . The parameters of the integral slid-

ing mode controller integrating the exponential reaching law are 
1 1000,c =  

2 1000,c =  

0.5, =  10k = . 

 To validate the efficacy of the impedance control method, obstacles were de-

signed at position 1xl = . When 1xl  , the polishing robot is not in contact with the 

obstacle, and contact force 0reF = , 
d cl l= . When 1xl  , the polishing robot collides 

with an obstacle, and at this moment, , , , 0c c c rel l l l l l F    , resulting in an imped-

ance trajectory 
d cl l . 

 
(a)X-axis position tracking                              (b)X-axis position tracking  error 

Fig. 1. X-axis position tracking under linear sliding mode method 



 
(a)X-axis position tracking                              (b)X-axis position tracking  error 

Fig. 2. X-axis position tracking under the integral sliding mode method without integrating the 

exponential reaching law 

 
(a)X-axis position tracking                              (b)X-axis position tracking  error 

Fig. 3. X-axis position tracking under the integral sliding mode method integrating the expo-

nential reaching law 

Figures 1, 2, and 3 show the position tracking trajectories of actual end position 

trajectory 
xl  and ideal impedance position trajectory 

dxl  in the x-direction under the 

three methods and the position tracking error graphs of actual end position trajectory 

xl  in the x-direction and ideal impedance position trajectory 
dxl  under the three meth-

ods. The simulation results indicate that the maximum position tracking error in the x-

direction can reach 0.25 m when employing the linear sliding mode method, which 

indicates suboptimal performance. When using the integral sliding mode method with-

out integrating the exponential reaching law, the position tracking error in the x-direc-

tion can be controlled within 0.04 m, which is a significant improvement compared to 

the linear sliding mode method. When using the integral sliding mode method integrat-

ing the exponential reaching law, the position tracking error in the x-direction can be 

controlled within 0.005 m, and the effect is further improved. 



 
(a)Y-axis position tracking                              (b)Y-axis position tracking  error 

Fig. 4. Y-axis position tracking under linear sliding mode method 

 
(a)Y-axis position tracking                              (b)Y-axis position tracking  error 

Fig. 5. Y-axis position tracking under the integral sliding mode method without integrating the 

exponential reaching law 

 
(a)Y-axis position tracking                              (b)Y-axis position tracking  error 

Fig. 6. Y-axis position tracking under the integral sliding mode method integrating the expo-

nential reaching law 



Figures 4, 5, and 6 show the position tracking trajectory diagrams of actual end 

position trajectory 
yl  and ideal impedance position trajectory 

dyl  in the y-direction un-

der the three methods and the position tracking error graphs of actual end position tra-

jectory 
yl  and ideal impedance position trajectory 

dyl  in the y-direction under the three 

methods. The simulation results demonstrate that all three control methods are capable 

of accurately tracking the desired impedance position trajectory in the y-direction. 

When using the linear sliding mode method, the position tracking error in the y-direc-

tion can be controlled within 0.025 m. The position tracking error in the y-direction can 

be controlled within 0.01 m using the integrated sliding mode method with or without 

integrating the exponential reaching law; the former has smaller error fluctuations after 

reaching stability compared to the latter. 

 
(a)X-axis velocity tracking                              (b)X-axis velocity tracking  error 

Fig. 7. X-axis velocity tracking under linear sliding mode method 

 
(a)X-axis velocity tracking                              (b)X-axis velocity tracking  error 

Fig. 8. X-axis velocity tracking under the integral sliding mode method without integrating the 

exponential reaching law 



 
(a)X-axis velocity tracking                              (b)X-axis velocity tracking  error 

Fig. 9. X-axis velocity tracking under the integral sliding mode method integrating the expo-

nential reaching law 

Figures 7, 8, and 9 show the velocity tracking trajectories of the actual end velocity 

trajectory xl  and the ideal impedance velocity trajectory 
dxl  in the x-direction under the 

three methods and the position tracking error graphs of the actual end velocity trajectory 

xl  in the x-direction and the ideal impedance velocity trajectory 
dxl  under the three 

methods. The simulation results indicate that the maximum velocity tracking error in 

the x-direction can reach approximately 0.9 m/s when using the linear sliding mode 

method, which is not ideal. When using the integral sliding mode method without inte-

grating the exponential reaching law, the velocity tracking error in the x-direction can 

be controlled within 0.3 m/s, which is a significant improvement compared to the linear 

sliding mode method. When using the integral sliding mode method integrating the 

exponential reaching law, the velocity tracking error in the x-direction can be controlled 

within 0.05 m/s, further improving the effect. What's more, in the y-direction, the ve-

locity trajectories controlled by the three methods have also achieved similar results. 

5 Experimental validation 

In this section, experimental validation and analysis are carried out to further con-

firm the effectiveness of the proposed impedance control method. Figure 10 presents 

the grinding robot experimental system, which includes a Sawyer robot, a torque sen-

sor, a high-speed electric spindle, a grinding tip, and a cylinder block.  

A comparative experiment is performed using the LSMIC and the ERL-ISMIC. 

Under the action of the controller, all joints can achieve stable operation, as shown in 

Figure 11, which illustrates the movement of four of these joints. Specifically, under 

the influence of LSMIC, the maximum steady-state errors of the four joints are 1.98, 

3.75, 0.83, and 4.84, respectively. In contrast, under the effect of ERL-ISMIC, the max-

imum steady-state errors of the four joints are 0.49, 1.48, 0.25, and 0.85, respectively. 

Therefore, the ERL-ISMIC designed in this paper improves the steady-state perfor-

mance of the grinding robot control system. 



 

Fig. 10. Grinding robot experimental system 

 
(a)joint 2                                                              (b)joint 3 

  
(c)joint 4                                                              (d)joint 5 

Fig. 11. Joint position tracking of grinding robot 
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6 Conclusion 

To tackle the challenge of achieving high-precision grinding on free-form sur-

faces, an integral sliding mode impedance control method for grinding robots is pro-

posed, utilizing the exponential reaching law. Firstly, the contact force between the 

robot and the workpiece is determined based on the impedance model and the tracking 

error. Subsequently, the ideal trajectory in Cartesian space is converted into an imped-

ance trajectory, guided by this contact force. Then, an integral sliding mode impedance 

control method is developed to track the modified impedance trajectory, significantly 

mitigating the chattering phenomenon inherent in sliding mode control, thanks to the 

utilization of the exponential reaching law. Finally, the control system's stability is ver-

ified through the application of Lyapunov stability theory, and recommendations for 

parameter selection are provided. Simulation and experimental results reveal that, com-

pared to linear sliding mode and conventional integral sliding mode methods, the 

method presented in this paper exhibits superior dynamic and static performance. 
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