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Abstract. In this study, we focus on addressing the problem of matching passen-

gers to their checked luggage when tags are lost during air travel. To use com-

puter vision's image retrieval technology to solve this issue, we first collected a 

dataset and a testing set that reflect real-world scenarios, based on the data char-

acteristics, we propose the Effective Query Ratio (EQR), to measure the accuracy 

of retrieval results. To improve the EQR on the testing set, we optimized the 

system framework in two ways. First, we filtered out background interference by 

using a segmented encoder, and then introduced a mask-augmented segmentation 

encoder to prevent the loss of edge information in semantically segmented im-

ages, thereby better extracting image features and improving the query ratio. Sec-

ond, we introduced a multi-image query mode to integrate information from mul-

tiple query images, further enhancing the query ratio. Experimental results show 

that our system has a 55.9% chance of including the corresponding passenger in 

the top 5 retrieval results, an 80.1% chance in the top 15, and a 96.6% chance in 

the top 30, demonstrating its potential application and effectiveness in retrieving 

luggage corresponding to passengers within a certain range. This study provides 

a new solution for matching lost luggage with passengers in the aviation industry, 

expanding the practical application scenarios of computer vision's image retrieval 

technology in real life. 
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1 Introduction 

With the rapid growth of the aviation industry, the volume of air travel has surged, 

especially after the easing of pandemic restrictions. In 2023, China's airport passenger 

throughput reached approximately 1.26 billion, a 142.2% increase compared to 2022 

[1]. According to statistics on passenger service complaints in air transport by the Civil 
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Aviation Administration of China in October 2022 [2], passengers were dissatisfied 

with luggage check-in fees and luggage delay and damage situations. Complaints about 

luggage accounted for 15.38% of the total complaints. Dealing with lost luggage caused 

by tag detachment during check-in is particularly difficult. Once detached, it is difficult 

to match the luggage with passenger information. Airlines can only store all untagged 

luggage in a warehouse and then manually investigate passengers. If not found, com-

pensation is made based on the weight of the luggage [3]. 

 

 
Fig. 1. Components and workflow of a CBIR system. 

 

Computer Vision (CV) is a rapidly advancing technology [4] that aims to replace hu-

man vision with machines to perform complex and repetitive tasks, leading to wide-

spread industrial applications. However, matching lost luggage with corresponding pas-

sengers in air travel presents additional challenges, and the current application of com-

puter vision technology in this area is limited.  

In this study, we employ Content- Based Image Retrieval (CBIR) technology from 

the field of CV to address the problem. The goal of CBIR is to retrieve images from a 

database that are most similar to a query image. The traditional retrieval process is il-

lustrated in Fig.1. Based on this process, the development of CBIR technology can be 

divided into two main directions: optimization of the encoder model to ensure that the 

resulting vectors more fully capture the features of the images, and optimization of al-

gorithms for vector similarity queries.  

For the optimization of encoders in CBIR technology, Encoder optimization can be 

approached in two main ways: traditional manual design and deep learning models. The 

former employs manually designed feature extraction algorithms to obtain image fea-

ture information, such as wavelet transform for extracting frequency domain infor-

mation and local features from images [5]. The SIFT algorithm proposed by Lowe is a 

milestone in manual feature design [6], detecting and describing local invariant feature 

points in images with scale and rotation invariance. Inspired by SIFT, Bay proposed 

the SURF algorithm [7], which further accelerates the feature extraction and matching 

processes. The ORB algorithm proposed by Rublee E emphasizes running speed in em-

bedded devices and real-time applications compared to SIFT and SURF [8]. However, 

since Krizhevsky's groundbreaking use of Convolutional Neural Networks (CNN) to 
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achieve the highest recognition rate on ImageNet in 2012 [9], it has become evident 

that CNN have tremendous potential in feature description. Consequently, the focus of 

feature extraction has shifted from manual design to model training. 

The underlying architectures of deep learning models include the CNN architecture 

and the Transformer architecture. The CNN architecture consists of a series of convo-

lutional layers, pooling layers, activation function layers, etc. Representative models 

include the VGG [10] series and the ResNet [11] series, which introduces residual con-

nections. On the other hand, the core of the Transformer architecture is fundamentally 

based on the attention mechanism [12], initially applied in the field of Natural Language 

Processing (NLP). Dosovitskiy [13] proposed the ViT model in 2020, successfully 

bridging the gap between computer vision and NLP. Additionally, He et al. [14] pro-

posed the MoCo model, applying momentum contrast for unsupervised representation 

learning, accelerating the development of contrastive learning. Following closely, the 

OpenAI team proposed the CLIP [15] model in 2021, which integrates associations 

between text and images, achieving remarkable performance across various visual and 

language tasks. For vector sorting, the Locality Sensitive Hashing (LSH) algorithm [16] 

is commonly employed. LSH uses hash functions to reduce dimensionality and accel-

erate sorting while preserving the similarity between vectors. Additionally, Xia [17] 

proposed the CNNH model, which employs deep learning models to obtain hash func-

tions that preserve inter-sample similarity information. 

2 Materials and Methods 

Compared to traditional CBIR system architecture, this study introduces key distinc-

tions that necessitate adjustments to the workflow. In the actual application scenario, 

the images of each piece of luggage are captured as they pass through the security con-

veyor belt and are stored in the image database with passenger information as their 

names. Therefore, each piece of luggage passing through the conveyor belt is captured 

in at least one image. This results in a database containing a large number of categories, 

yet each category is populated with only a limited number of images. This sparse dis-

tribution within categories constitutes a key characteristic of the dataset, making con-

ventional metrics such as accuracy and recall less applicable. Additionally, the luggage 

images are captured from specific angles corresponding to the positioning of the lug-

gage on the conveyor belt during scanning.  

From a different perspective, the information carried by the images in the database 

is extremely limited, indicating that the quality of the query image significantly impacts 

the quality of the final query results. Factors such as the shooting angle, lighting, and 

presence of obstructions in the query image will affect the results. 

2.1 System Structure 

Let the known image database be represented as a set I, containing a total of N images. 

The image to be retrieved is denoted as q, and a function W(q) is defined to determine 

the class of the image, corresponding to the respective passenger. The query phase 
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involves calculating the similarity between each element in I and q, followed by sorting 

the results. The detailed process is illustrated in Fig. 2. 

 

 
Fig. 2. Workflow of the CBIR system in single-image query mode. 

2.2 Evaluation Criteria 

To evaluate the quality of query results, traditional metrics like accuracy and recall are 

no longer applicable, For this study, a customized evaluation metric is needed. Let's 

define a function for same-class determination,  𝐶(𝑞1, 𝑞2): 
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This function takes two parameters, which can be either images or vectors correspond-

ing to images after encoding. If the two inputs correspond to the same luggage category, 

the function outputs 1; otherwise, it outputs 0. 

Given a query image q, after the feature extraction and similarity ranking steps, we 

obtain a sorted list of all elements in I regarding q from highest to lowest similarity, 

referred to as a complete query. Let's denote this sorted list as result. Introducing a 

function E(q,K): 

 

0

( , ) sgn( ( , [ ]))
K

i

E q K C q result i
=

=   (2) 

Where K is a positive integer, and q is a collection of query images corresponding to a 

certain piece of luggage. For the results of a complete query, this function counts the 

number of instances of the same class as the query images among the top K results in 

the sorted list. If this count is a positive integer, it outputs 1, indicating a successful 

query; otherwise, it outputs 0. It's evident that as K increases, the range considered by 

the function expands, and E(q,K) converges towards 1. However, this also means more 

images need to be examined, so ideally, we want E(q,K) to approach 1 with K being as 
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small as possible. Furthermore, to measure the results of testing set T under different 

encoders or system architectures, we define the Effective Query Ratio (EQR) as top(K): 
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By performing complete queries for each image in T, we calculate the ratio of success-

ful queries to the total number of queries. In summary, the smaller the K, the higher the 

top(K), indicating better retrieval performance. For this study, this means that by ex-

amining only the top K results corresponding to passengers, we can ensure a relatively 

high accuracy for top(K). 

2.3 Preliminary Preparation 

In 2023, the passenger throughput of airports in China was approximately 12 billion. 

Based on industry estimates, the number of checked luggage falls between 50% and 

60% of the passenger throughput. In 2023, there were 259 regularly scheduled flight 

transport airports in China. After calculation, it can be determined that on average, each 

airport receives approximately 7,000 pieces of passenger luggage per day. Retrieval 

and sorting of these images in such a large database significantly affects the top(K) 

queries. Therefore, it is recommended to first narrow down the time range and flight 

location of the lost luggage, and use this information to further limit the range of the 

image library to about 1,000 items as part of the data set preprocessing process before 

feature extraction. This paper adopts the simple and effective cosine similarity, defined 

as: 

 cos ,
T

=
a b

a b
a b

 (4) 

Where a and b are the two column vectors obtained after the images are encoded. The 

normalized inner product yields the cosine similarity. 

2.4 Encoder 

For the feature extraction process, available encoders can transform the image into a 

vector, as shown in Fig.3(a). In order to mitigate background interference, a two-stage 

feature extractor is introduced, consisting of a semantic segmentation module. The spe-

cific process is illustrated in Fig.3(b), where the semantic segmentation module first 

obtains a mask indicating the location of the luggage. This mask is overlaid on the 

image to set the background to black, the resulting image is then fed into the CNN to 

extract feature vectors. Additionally, to prevent the loss of information at the edges of 

the luggage caused by the semantic segmentation module, further consideration is given 

to expanding the mask before extraction. As shown in Fig.3(c), the expansion method 
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in this paper involves using a 5*5 dilation kernel and iterating the dilation operation 

three times to achieve the expansion. 

 

 
Fig. 3. Three encoder structures used in this paper. 

2.5 Multi-Image Query Mode 

The consideration for feature extraction is already sufficient, but the limitation of hav-

ing too few instances for each class in the dataset makes it difficult for even the best 

encoders to perform effectively. Fortunately, although there are only a few images for 

each class in the dataset, multiple images of the same luggage can be captured during 

luggage inspection. We can find a way to integrate information from multiple images 

of the same luggage, it is believed to be beneficial for improving accuracy. Therefore, 

a new query method is introduced, namely multi-image query, as illustrated in Fig. 4. 

 
Fig. 4. The structure of the CBIR system under the multi-image query mode. 

 

In order to integrate the information from multiple images of the same piece of luggage, 

we introduce a list of weights to each images, and the weighted sum of the similarity 

vectors is obtained to obtain the aggregate similarity vector. Regarding the definition 
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of the weights, we consider using the temperature-adjusted SoftMax function [18] to 

obtain the weight of each image: 
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The reason for choosing the temperature-adjusted SoftMax function is that, its inherent 

temperature parameter can control the way weights are distributed by adjusting the pa-

rameter. As an adjustable parameter, the larger the τ, the more equal the weights of each 

image; the smaller the τ, equivalent to taking the maximum value. In any case, it rep-

resents the overall information of the samples, and this also emphasizes the importance 

of selecting a suitable τ. Furthermore, since the multi-image query mode is an architec-

ture, the several encoders proposed under the single-image query mode can also be 

directly used in the multi-image query mode. The details and implementation of these 

cases will be verified and discussed in the next section. 

3 Results and Analyses 

The topic uses a pre-trained neural network model on the ImageNet dataset as a feature 

extractor. The image dataset was collected by the author and contains 982 images of 

luggage on airport conveyor belts, categorized into 729 folders, each corresponding to 

a passenger. The test set comprises 184 images obtained by searching for luggage im-

ages online, Fig.5 displays several images from the dataset and their corresponding test 

set. 

 
Fig. 5. Several images from the dataset and their corresponding test set. 

 

We use the top(K) on the test set as the evaluation metric for the experimental results, 

also known as the EQR, which reflects the probability of the target image being in-

cluded in the top K images when similarity is arranged in descending order. 

The first step is to select the most suitable encoder from numerous pre-trained mod-

els. By experiments, the top(K) values for different pre-trained models are obtained, as 
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shown in Table 1. It can be observed that as the query number K increases, the top(K) 

also increases, as expected. The lightweight networks process a higher number of im-

ages per second, but at the cost of reduced query ratios. The ResNet50 model, signifi-

cantly outperforms other networks in terms of top(K). So, the subsequent experiments 

in this paper default to using the pre-trained ResNet50 network as the feature extractor. 

Table 1. The  top(K) metrics for different models. 

Encoder Size(M) 
top (K) 

it/s 
K=5 K=10 K=15 K=30 

Vgg19 143 0.23 0.30 0.36 0.47 2.1 

ResNet18 11 0.21 0.32 0.38 0.50 15 

ResNet50 25 0.37 0.46 0.53 0.66 5.1 

ResNet152 60 0.28 0.41 0.49 0.65 2.2 

DenseNet169 14 0.36 0.39 0.44 0.53 4.0 

CLIP(B/32) 86 0.27 0.32 0.39 0.46 10 

CLIP(L/14) 123 0.31 0.47 0.51 0.59 1.0 

 

To further enhance the top(K) metric, an analysis of the retrieval effect of the test set 

using the ResNet50 network is presented in Fig.6. It can be observed that the similarity 

in the current retrieval results is generally low, the reasons for this phenomenon are 

diverse, but the background interference being the primary cause. Another important 

reason for the low query ratio is that different passengers may have luggage with similar 

shapes and colors. In such cases, it is difficult to distinguish similar luggage using only 

one test image. To optimize the system, we address these two aspects. 

 
Fig. 6. The results obtained by the CNN encoder in single-image query mode. 

 

Regarding the background interference issue, we use the pre-trained U2-Net model for 

semantic segmentation of images, which will generate a mask containing luggage zone, 

and overlaid it onto the original image. However, semantic segmentation often results 
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in the loss of object edge information. To mitigate this, a mask expansion method is 

introduced to preserve edge details. In this paper, the expansion is achieved through a 

5*5 dilation kernel, iterated three times to complete the expansion. Subsequent experi-

ments compare the top(K) metrics of these three different encoders, as presented in 

Table 2, which displays that the encoders with semantic segmentation modules achieve 

higher top(K) values compared to direct CNN extraction, the segmentation encoder 

with mask expansion outperforms the semantic segmentation module alone, indicating 

successful suppression of background interference. 

Table 2. The top(K) metrics using three different encoders. 

Encoder 
top (K) 

it/s 
K=5 K=10 K=15 K=30 

ResNet50 0.369 0.467 0.527 0.663 5.13 

Seg+Resnet50 0.331 0.554 0.663 0.820 0.61 

PadMask+Resnet50 0.380 0.630 0.761 0.945 0.59 

 

The retrieval results utilizing the segmentation encoder with mask expansion are illus-

trated in Fig.7, where the system focuses more on the luggage's inherent features rather 

than the brightness of the background. 

 
Fig. 7. The results obtained by the CNN encoder with pad-mask in single-image 

query mode. 

 

For the multi-image query mode of this study, it is essential to first select the most 

suitable τ parameter. We utilize CNN to directly extract features in the multi-image 

query mode and test the variation of top(K) results with different τ values, as depicted 

in Fig. 8. 
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Fig. 8. The relationship curve between top(K) and τ in the multi-image query mode. 

 

There are two significant turning points in the Fig. 8: one occurs when τ is set to 0.2, 

where top(5), top(10), and top(15) all achieve their maximum values; the other is when 

τ is set to 1.2, where top(30) reaches its maximum value, although top(10) experiences 

a slight decrease while the rest remain at their peak. 

Table 3 compares the multi-image query modes with τ values of 0.2 and 1.2 respec-

tively, the system is tested for the effects of introducing different encoders. 

Table 3. The top(K) for multi-image queries under different temperature parameters τ. 

Query Mode Encoder 
top (K) 

K=5 K=10 K=15 K=30 

single 

CNN 0.369 0.467 0.527 0.663 

Seg+CNN 0.331 0.554 0.663 0.821 

PadMask+CNN 0.380 0.630 0.761 0.946 

multi 

(τ=0.2) 

CNN 0.271 0.355 0.423 0.627 

Seg+CNN 0.457 0.593 0.627 0.797 

PadMask+CNN 0.559 0.677 0.797 0.966 

multi 

(τ=1.2) 

CNN 0.271 0.338 0.423 0.644 

Seg+CNN 0.474 0.559 0.627 0.812 

PadMask+CNN 0.542 0.677 0.801 0.966 

 

The data in the Table 3 indicates that under direct CNN encoding, the multi-image 

query results are not as effective as the single-image query method. This performance 

discrepancy arises primarily from the background interference, which hinders the ac-

curate similarity calculation and leads to cumulative errors during the subsequent Soft-

Max weight allocation process. However, the benefits of the multi-image query method 

become evident when using a CNN encoder with semantic segmentation, the growth 
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rate of the multi-image query mode is higher, and the effectiveness of the multi-image 

query mode is superior to the single-image query mode when using a mask-enhanced 

segmentation encoder. For the two multi-image query modes with different τ parame-

ters, introducing the segmentation module into the CNN encoder can improve the 

top(K) results. 

 
Fig. 9. Effect images of the multi-image query mode with different temperature pa-

rameters for the pad-mask encoder. 

 

Similar to the single-image query, the multi-image query mode provides richer infor-

mation and yields superior matching results. Regarding the differences in the query 

results corresponding to the two different τ parameters, as previously analyzed, a τ 

value of 0.2 is more suitable in scenarios with a smaller K, which is also confirmed in 

Fig.9. While the correct query results may appear a the beginning of the returned list, 

it is important to note that the interference caused by the color or brightness of some 

luggage photos is difficult to completely avoid. For example, confusion between blue 

and orange, purple and yellow, or low brightness of white being recognized as black. 

This necessitates further optimization of the system workflow and algorithm updates in 

the future. 
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4 Conclusions 

This paper transforms the problem of luggage retrieval into an image retrieval problem, 

and then mathematically characterizes it, then proposing an evaluation metric suitable 

for this study, namely top(K). 

From a system perspective, the database and feature extraction process were ana-

lyzed and optimized. Regarding the database, research was conducted on the daily lug-

gage volume at airports, and a dataset of similar magnitude was collected. Subse-

quently, a test set was created based on the dataset, covering common scenarios such 

as lighting, angles, and occlusions. As for the feature extraction process, the impact of 

using different pre-trained models as encoders on top(K) was verified. ResNet50 was 

selected as the CNN encoder for subsequent experiments. The role of semantic seg-

mentation modules in resisting background interference was validated, and a mask-en-

hanced module was introduced to address the issue of lost edge information after se-

mantic segmentation. Finally, the influence of the temperature parameter τ in the multi-

image query mode on top(K) was discussed. Throughout this process, the system frame-

work was optimized layer by layer, leading to incremental improvements in the top(K) 

indicator. 

The experimental results demonstrate that our system has a 55.9% chance of includ-

ing the corresponding passenger in the top 5 retrieval results, an 80.1% chance of find-

ing them in the top 15 results, and a 96.6% chance of finding them in the top 30 results. 

The dataset utilized in this paper is derived from real-world scenarios, and the test 

set is designed with practical considerations in mind. Therefore, the results obtained 

from experiments are convincing, and the methods used in this system can be applied 

in real-life situations, effectively retrieving lost luggage, thus saving manpower and 

resources, and holding significant importance. 

However, the shortcomings of this paper lie in the introduction of segmentation and 

enhancement modules, which, although improving top(K) to some extent, do not sig-

nificantly enhance it. Therefore, exploring different methods or using different weight 

functions during multi-image queries to further improve top(K), or designing alterna-

tive query methods different from single-image and multi-image queries, could be con-

sidered. Additionally, it is also worth considering expanding the scale and variety of 

the dataset to analyze the efficiency of different query methods. These are also potential 

directions for further research in the future. 
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