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Abstract. Wheel tread defect recognition is a crucial step to ensure the safety 

of the train wheel-rail system service. However, the diverse and complex nature 

of wheel tread defects, coupled with the presence of minor defect features, poses 

significant challenges to accurately identifying the defect by existing deep 

convolutional neural network. To address this issue, we develop a small target 

defect detection module and propose a railway wheel tread defect recognition 

method based on an improved convolutional neural network. First, a deformable 

convolutional deformable attention-enhanced bottleneck module is designed to 

achieve adaptive adjustment of the network receptive field in the backbone 

network. Secondly, an adaptive spatial and channel enhancement module is 

constructed to further improve the network's sensitivity and processing 

capabilities for different features. Thirdly, we design a new module called the 

spatial grouped attention fusion pyramid module, to enhance the extraction and 

fusion capabilities of multi-scale features through grouping and fusion spatial 

attention mechanisms, enabling effective extraction and discrimination of defect 

multi-layer semantic features. Finally, experiments are conducted on a tread 

defect dataset with an imbalance ratio of 10:1. Experimental results demonstrated 

the excellent performance of the proposed model on public datasets. The 

achieved average mAP@0.5 value jumps from 90.8% to 91.9%. Similarly, the 

observed average mAP@0.5:0.95 value boosts from 53.9% to 54.9%. 

Keywords: Convolutional Neural Network, Defect Detection, Train Wheel 

Tread, Attention Mechanism, Feature Fusion. 

1 introduction 

With the advent of the new era of high-speed train movement, safety hazards in train 

operations have become increasingly prominent. Particularly, wheelsets, the critical 

supporting and traveling components of trains, often exhibit tread defects and damage 

due to wheel-rail rolling contact. If not addressed in time, these issues may further 

deteriorate, pose threat to the safety of trains operation. It has bring mounting 

difficulties for the conventional manual experience detection method to identify these 
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defects. With the raise of image processing, technologies such as automatic defect 

recognition for wheelset tread images based on machine vision commence to emerge. 

Since the proposal of the VGG [3] network model, deep learning models represented 

by Convolutional Neural Networks (CNNs) have been available for widely image 

recognition use due to their powerful feature extraction capabilities. CNNs 

automatically learn the features of defects from image samples to be identified, and the 

trained network can recognize and classify these defects. Currently, there are two 

models based on CNN: YOLO [5] and R-CNN [6]. In the YOLO scenario, the 

predication of location and category of objects in an image can be densely conducted, 

meaning that even small objects occupying a small number of pixels can be detected 

possibly. However, by utilizing a single regression method to directly predict the 

coordinates of bounding boxes and category labels, it may lead to deduction for the 

accuracy of bounding box localization, especially for small or overlapping objects, 

where the precision of localization is more likely to be affected. In contrast, R-CNN 

generates relatively fewer candidate regions through methods such as selective search, 

but this may lead to small objects being overlooked or an insufficient number of 

candidate boxes. 

To effectively recognize features of different levels, some feature fusion modules 

with higher recognition rates for small defects had been proposed. CHEN [8] conduced 

an efficient feature extraction method called the ELAN module for tire defect feature 

extraction, which reduced the interference of redundant features while retaining 

important information, thereby improving the quality of feature representation. SHAO 

[9] et al. designed a spatial pyramid cross-connection module, where the parallel 

structure of the pooling part was changed to a serial structure, improving the network's 

inference speed without compromising accuracy. XU [10] et al., proposed an improved 

version of the bidirectional feature pyramid network to perform bidirectional feature 

fusion with HorNet, enhancing the detection performance of small-sized objects and 

thereby improving the detection accuracy of catenary components. 

Additionally, it is difficult for small object detection with few features to extract 

beneficial semantic feature information during network training. Furthermore, a 

considerable amount of feature information for small objects is deleted after multiple 

down-sampling and pooling operations, making it challenging for the model to 

accurately locate and recognize small objects. Therefore, dozens of scholars dedicated 

to enhancing the feature information of small objects without increasing the model's 

complexity. DING [11] et al. used a new plug-and-play cross-fusion (CF) block to 

simultaneously aggregate features from different stages, optimizing the model's 

performance. ZHANG [12] et al. conducted an insulator defect feature enhancement 

module that emphasized target information and reduced the possibility of vanishing 

gradient problems. ZHAO [13] et al. proposed the C2fSE module, which used an 

attention mechanism to replace the backbone network's C2f module. The C2fSE 

module could obtain more image information without increasing the number of 

parameters and model size. To suppress the interference of invalid information in 

feature maps, the attention mechanism endowed the model with focusing capability, 

assigning greater weight to effective feature information and achieving the goal of 

suppressing unimportant noise interference information. Examples including BiFormer 
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attention [14] and SimAM attention [15], which performed adaptive feature adjustment 

on the input data by learning data distribution and adaptive parameters, enhancing the 

model’s expression capability and performance. 

According to the above work, this paper proposes a train wheelset tread defect 

recognition model based on attention feature fusion to address the underutilization of 

shallow features extracted from wheelset tread defects and the lack of defect samples 

during model training. The main contributions of this paper are as follows: 

(1) A novel deformation attention-enhanced bottleneck module is used to enhance 

the performance of the attention mechanism, especially when dealing with complex 

scenes and small objects, by introducing a dual-scale context module to capture more 

global and local information. 

(2) A new adaptive spatial and channel enhancement module is proposed, which 

constructs a multi-level integrated feature representation method by jointly utilizing 

low-level detail information and high-level semantic information. This method can 

effectively extract and distinguish the multi-level semantic micro-features of defects. 

(3) A pyramid split attention network space grouped attention fusion pyramid 

module is proposed, which can perform layered extraction of input features at multiple 

scales, while introducing multiple convolution kernels and grouped convolution 

structures to adapt to features of different scales. 

2 Wheel Tread Defect Identification Model 

The structure of the wheelset tread defect identification method is shown in Figure 

1, including modules such as tread defect data collection, main feature extraction, and 

defect identification decision-making. 

The defect identification process is as follows: First, the tread defect dataset is 

preprocessed to achieve conversion between images and markup languages used for 

storing and transmitting data. Subsequently, the images are sent to the backbone 

network to extract preliminary tread defect features before outputting two feature maps 

of different scales, with the feature map sizes down sampled to 2 and 4 times the input 

image size respectively. Next, the images extracted by the backbone network are 

imported into the deformable attention-enhanced bottleneck designed after convolution 

operations to obtain processed features. Then we apply the adaptive spatial and channel 

enhancement module after convolution operations to obtain processed feature maps. 

Again, the features are fed into the spatial grouping attention fusion pyramid module in 

this paper, and the results are introduced to the connection layer to export the target 

image features. Finally, the features are imported into the identification decision-

making layer, utilizing the detection head to generate the result image and the detection 

results. We also employ the bounding box regression loss function to improve the 

recognition performance of imbalanced data. 
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Fig. 1 Method for identifying defects in train wheelset tread 

2.1 Deformable Attention-Enhanced Bottleneck Module 

First, a convolution operation is applied on the input image. Next, a separation 

operation divides the image into two parts to facilitate parallel data processing and 

boost the model’s efficiency. The bottleneck dual attention module incorporates a D 

attention module into the standard bottleneck module, allowing it to automatically 

identify and prioritize important features during feature extraction. This improves focus 

on significant features while suppressing irrelevant ones, thereby enhancing the 

model’s performance and generalization capability. The D attention module is 

particularly effective for identifying tread defects. For further details, refer to 

Algorithm 1. 

Algorithm 1 Bottleneck Convolution Algorithm 

Step 1 Bottleneck Dual Attention 

The input feature map undergoes a convolution operation, outputting the weighted 

feature map, and the convolution encoding process is shown in Figure 2. 

 

Fig. 2.  Convolutional coding procedure  



7 

(1) Use convolution operations to calculate the offset at each position, so as to 

distort the position in the attention mechanism. The offset can be obtained from the 

query tensor q through convolution operations: 

   _ ( )offset conv offset q  (1) 
where offset  is the offset tensor, and q is the query tensor. 

(2). Use convolutional layers to project the input feature map to get query q, key 

k, and value v: 

 _ ( ), _ ( ), _ ( )q proj q x k proj k x v proj v x    (2) 
where q is the query tensor, k is the key tensor, and v is the value tensor. 

(3) Calculate relative position encoding, apply softmax normalization to get 

attention weights, and use these attention weights to perform weighted summation on 

the values to derive the output tensor: 

 max( )Tattn soft q k   (3) 

 _ ( _ ( ))y proj drop proj out attn v   (4) 
where attn is the attention weight tensor, and y is the output tensor. 

Step 2 The introduction of position encoding enhances the model’s ability to 

understand the spatial relationships between features. By encoding the position 

information of features, the module can manage the local and global relationships 

between features scientifically, improving the model’s performance and robustness. 

Step 3 Connect the feature blocks output by D attention to obtain the final output: 

 ( , )c G LX Concat X X  (5) 

where X c  is the attention weight tensor, GX and LX  are the output tensors. 

 
 

Fig. 3.  Convolutional coding procedure  

2.2 Adaptive Spatial and Channel Enhancement Module 

Detecting small object poses captivating challenge in computer vision domains. 

Traditional object detection methods often struggle with issues such as inaccurate 

object localization, missed detections, and false detections when dealing with small 
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objects. It is primarily due to weak feature information of small objects, which is 

difficult to accurately capture and represent. 

We can integrate channel attention and spatial attention to improve the accuracy 

and robustness of object detection. Therefore, considering the detailed local 

information contained in low-level features and the rich global semantic information in 

high-level features, a new module called the Small Object Detection Block (SODB) is 

designed to fully integrate spatial and global information between different levels of 

features, as illustrated in Figure 5. 

Firstly, a channel attention mechanism is employed, which weights the channel 

features through adaptive average pooling and convolution operations to enhance the 

response of important features. Subsequently, a spatial attention mechanism is applied, 

capturing the spatial relationships between different features by computing the mean 

and maximum values along the channel dimension to further optimize the feature 

representation. 

The specific steps are as follows: Initially, perform convolutional separation on 

the image, followed by using the channel attention mechanism to learn the importance 

of each channel, whose weight will be adjusted in the feature map. This allows the 

network to better comprehend the importance of specific features for the task, 

improving the network's expressiveness and performance. Next, apply the spatial 

attention mechanism to adjust the weight of each pixel in the feature map, weighting 

according to the importance of each spatial location. 

By adjusting the weights of each channel and spatial location in the feature map, 

the network enhances its ability to represent small target features, facilitating the 

capture of subtle details. The processed feature map is then fed into the bottleneck 

module for multiple training iterations. Finally, the outputs from the channels are 

concatenated to obtain the final result. 

This paper introduces the improved SODB module as the Adaptive Spatial and 

Channel Enhancement Module after removing more redundant and noisy features. 

Compared to the original module, the Adaptive Spatial and Channel Enhancement 

Module enhances the feature representation of important positions through weighting, 

making the model more effective in utilizing spatial information and improving the 

model's effectiveness in detecting small targets. 

The traditional structure and the Adaptive Spatial and Channel Enhancement 

Module proposed in this paper are shown in Figures 4 and 5. 

 

Fig. 4. Traditional module 
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Fig. 5.  Adaptive spatial and channel enhancement module 

2.3 Spatial Grouping Attention Fusion Pyramid Module 

In the context of wheelset treads, it is difficult to obtain sufficient samples, and 

there are many irrelevant stains, rust, and other redundant features in the process of 

tread image recognition. These irrelevant features propagate with the learning and 

training of the model, and their weights in the feature maps increase as the network 

layers deepen, thereby negatively impacting the model. To reduce the influence of 

useless and redundant features on small target defects, this paper proposes the Spatial 

Grouping Attention Fusion Pyramid Module (SGAFPM), as shown in Figure 6, to 

effectively eliminate background interference, filter important features, and refine 

semantic information. 

 

Fig. 6. Spatial Grouping Attention Fusion Pyramid Modul 

The objective of the SGAFPM module is to introduce an attention mechanism to 

enhance the performance of semantic segmentation, while using feature fusion 

convolutional layers to extract features at different scales to improve the accuracy and 

robustness of semantic segmentation. Concurrently, the designed SEG module 

emphasizes the weighted fusion of the feature maps through the spatial attention 

mechanism to enhance the model’s attention to features at different spatial positions, 

thereby improving the performance of the semantic segmentation model. 

The SEG module comprises two key steps: 

Step 1: Feature Grouping and Independent Convolutions 

(1) Feature grouping and independent convolution operations. In this step, the input 

features are divided into multiple groups, where each group are independently 

convolved. Thus, the output features of all groups can be merged. We can express the 

feature as the following formula: 

 ( ( )), ( 1,2,..., )i iO Concat Conv I for i N   (6) 

where iO  is the output features of group , iI  represents the input features of group 

i, 3 expresses the number of groups the input features are divided into, Conv is the 
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convolution operation, and concat represents the concatenation operation, which 

concatenates multiple feature maps along the channel dimension. 

(2) Convolution operations in the horizontal and vertical directions to obtain feature 

information at different scales. Specifically, the grouped features are convolved in two 

directions, and then the results can be merged. The mathematical expression for this 

step is: 

 _ ( )H Conv Horizontal M   (7) 

 _ ( )V Conv vertical M  (8) 

 ( , )F Concat H V  (9) 
where H is designated as the feature map in the horizontal direction, V represents 

the feature map in the vertical direction, and F is the merging of the horizontal and 

vertical feature maps. 

Step 2: Attention Weighting 

A simple attention mechanism is adopted to learn the importance of different regions 

in the feature map and weight the features according to their importance. The attention 

mechanism includes the following two steps: 

(1) First, the attention map A is obtained through the grouped convolution operation. 

Then, the attention map is convolved in the horizontal and vertical directions, the results 

are also added to the original attention map to obtain the fused attention map FA, as 

described by the following formula: 

 _ ( )AF A Conv Fusion A   (10) 

Where In the formula, A represents the attention map, and AF  represents the fused 

attention map. 

 

 F AF M F  (11) 

Where In the formula, M is the original feature map,  is the element-wise 

multiplication operation used for weighting the feature map, and 
F

F  denotes the 

weighted feature map. Through this series of steps, the SEG module achieves the 

grouping, convolution, attention weighting, and fusion operations of features, thereby 

enhancing the model's ability to perceive features at different spatial locations, aiding 

the model in focusing more effectively on areas containing small targets and thus 

improving the performance of the semantic segmentation model. 

3 Experiment results and analysis 

This section first introduces the experimental dataset settings, parameters, and 

evaluation metrics. Then, the experimental results are presented and analyzed. The 

experiment comprises four parts: model training process, backbone feature extraction 
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network comparison, attention fusion feature comparison, and model comparison 

evaluation. 

3.1 Experimental Description 

3.1.1 Experimental Dataset 

A total of 232 defect samples are collected using the data acquisition system. Due to 

the difficulty in collecting real train wheelset data, the number of real defect samples is 

limited. To mitigate the risk of overfitting in the convolutional neural network model, 

this study applied data augmentation techniques to the defect samples, including 

horizontal mirroring, vertical flipping, and 180-degree rotation. Consequently, a total 

of 927 train wheel tread defect images are generated. To evaluate the performance of 

the model, the size of the images in the dataset is uniformly adjusted to 600×800, and 

the training and test set are divided in a 7:3 ratio. The augmented defect images are 

shown in Figure 2, with delamination and scratches corresponding to 262 and 562 

images respectively, as illustrated in Figure 8. The final size of the training set is 371 

images, and the size of the test set is 160 images. 

 

Fig. 7.  Data label distribution diagram 

3.1.2 Experimental Parameters 

The network experiments are conducted on a Windows 10 operating terminal 

system, using Python 3.8 language, Intel(R) Xeon(R) Platinum 8269CY CPU 

@2.50GHz 2.49GHZ (2 processors), with NVIDIA Tesla T4 graphics configuration, 

trained and predicted under the Pytorch framework environment, and accelerated using 

CUDA 11.1. The optimizer used is Auto, the batch size is set to 16, the learning rate is 

initialized to 0.01, the number of iterations is 600, and an early stopping training 
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strategy is adopted, stopping the training when the model shows overfitting leading to 

worse performance on the test set. Additionally, the network’s Dropout rate is 0.25 to 

avoid feature overfitting, and batch normalization is used during network training to 

normalize the mean and variance of each layer’s output, preventing gradient explosion, 

gradient vanishing, and network degradation. The training parameters in the network 

are shown in Table 1 below. 

Table 1  Training related parameters 

Parameters Parameters Values 

Image Size 600x800 

epochs 600 

batch size 16 

Initial learning rate lr 0.01 

Workers 128 

3.1.3 Evaluation Metrics 

This study aims to identify the status of collected wheelset tread defect images. The 

experiment primarily employs common evaluation metrics for assessment, specifically 

using Accuracy, Precision, Recall, and F1-score. The calculation formulas are provided 

below. 
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Among them, TP (True Positive) and TN (True Negative) indicate that the predicted 

label is the same as the actual label; FP (False Positive) and FN (False Negative) 

indicate that the predicted label is different from the actual label. 
3.2 Backbone Feature Extraction Network Comparison Experiment 

When dealing with complex interference and class imbalance in tread defects, the 

importance of neural networks is conveyed in extracting visual features. To effectively 

describe the differences between different defect categories, a good feature extractor is 

needed, and the backbone network plays a key role in this process. Therefore, this paper 

introduces an improved neural network and compares it with the backbone feature 

extraction networks of YOLOV3[16] and YOLOV5[17] to evaluate the performance 

of the algorithms. The experimental results are presented in Table 2. 
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Table 2  Impact of different backbone networks on the dataset 

Main Network Map50/% Map50-95/% Model Size/MB 

YOLOV3[16] 87.2 49.1 4.72 

YOLOV5[17] 89.9 50.8 3.67 

Method in this article 91.9 54.9 6.39 

On the basis of results of Table 2, a comparison of the three backbone feature 

extraction networks shows that YOLOv3 is limited in feature extraction capability 

compared to other networks. The mainstream YOLOv5 uses CSP connections to make 

more full use of the information of input features, reducing information loss, which 

helps the network learn richer and more complex feature representations. It effectively 

addresses network degradation issues, significantly improving accuracy compared to 

YOLOv3. The model proposed in this paper improves Map50 and Map50-95 by 2.0% 

and 4.1% compared to YOLOv5, respectively due to the method has better feature 

extraction capabilities. Moreover, the introduction of a grouped attention fusion 

strategy in the residual block assigns more weight to important defect target areas and 

adaptively adjusts their feature weights, thereby effectively enhancing recognition 

performance. 

3.3 Attention Fusion Feature Comparison Experiments 

To demonstrate the effectiveness of the attention feature fusion strategy proposed in 

this paper, discussion experiments are conducted on the model. The contrast models in 

the experiments are: YOLOv8 without any fusion method, as a blank control network 

1; YOLOv8 combined with a novel deformable attention-enhanced bottleneck module 

for feature extraction, as network 2; YOLOv8 combined with a spatial grouped 

attention fusion pyramid for feature extraction, as network 3; and YOLOv8 combined 

with an adaptive spatial and channel enhancement module, deformable attention-

enhanced bottleneck, and spatial grouped attention fusion pyramid for feature 

extraction, as network 4. This is to evaluate the effectiveness of the fusion strategies in 

the proposed model. The experimental results are shown in Table 3. 

 

Table 3  The effect of different fusion methods on algorithm performance 

Fusion Method Map50/% Map50-95/% Model Size/MB 

Network 1 90.6 53.9 5.96 

Network 2 91.2 54.9 6.11 

Network 3 91.9 54.6 6.11 

Network 4 91.4 54.9 6.19 

Methods in this article 91.9 54.9 6.39 
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By comparing the results in Table 4, it can be seen that the recall rate of Network 1 

without feature fusion is relatively the lowest, indicating that the introduction of 

positional encoding can improve the recognition ability of the algorithm. The accuracy 

of Network 3, which uses element fusion spatial grouping attention fusion pyramid, is 

higher than that of Network 1 without fusion, demonstrating that enhancing the 

performance of semantic segmentation while using feature fusion convolution layers to 

extract features at different scales is effective in improving the accuracy and robustness 

of semantic segmentation. By comparing Network 4 and Network 1, we find that, the 

use of the adaptive spatial and channel enhancement module to replace the original C2f 

module through the introduction of attention mechanisms and more complex feature 

fusion strategies, as well as more diverse module designs, can more effectively extract 

image features and achieve better performance in image processing tasks. The method 

proposed in this paper achieves the best results in all indicators, indicating that the 

network structure design based on the attention feature fusion strategy is reasonable 

and effective. At the same time, the design of adaptive spatial, channel enhancement 

modules, and spatial grouping attention fusion pyramid modules have all improved the 

accuracy of the model. The attention feature fusion strategy can specifically utilize 

detailed information in low-level feature maps and global information in high-level 

features while reducing noise interference in low-level feature maps. 

2.4 Grad-CAM Heatmap 

To further improve the interpretability of convolutional neural networks and verify 

the effectiveness of the residual attention module in mitigating noise interference, Grad-

CAM (Gradient-weighted Class Activation Mapping) class activation visualization 

technology is used to visualize and compare the two defect types of tread scuffing and 

tread peeling. Based on the heatmap, the depth of its color reflects the model's attention 

to local areas of the image, with red areas being the regions of highest attention. The 

color distribution of the heatmap intuitively shows which areas of the image contribute 

significantly to category classification. 

The weight files of the trained model in this paper are used to output the heatmap of 

the last convolutional layer in the backbone network using Grad-CAM technology. 

From the heatmap, as shown in Figure 9, it can be seen that the original unmodified 

model has a high degree of attention to non-defective regions with significant noise 

interference, shown in red, indicating that the model is severely affected by noise 

interference, which will affect the detection results. The method in this paper, as shown 

in Figure 10, greatly reduces the degree of attention to non-defective regions with noise 

interference and does not reduce the attention to real defect areas, which will help 

improve defect detection results, indicating that the three improvement modules have 

some effect in weakening noise interference. 
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(a)Depression Defect                                              (b) Peeling Defect 

Fig. 8. Heatmap before improvement 

 

  

(a)Depression Defect                                                (b) Peeling Defect 

Fig. 9. Heatmap based on methods of this article  

After enhancing the module of the model, we significantly reduce the impact of noise 

factors such as lighting and stains on detection performance. This improvement 

highlights the target to be detected within complex backgrounds, providing a solid 

foundation for the subsequent accurate detection of wheel defects. 

2.5 Analysis of Model Generalization Ability 

A To verify the proposed model's ability to accurately identify different types of 

defects, we conducted an additional experiment using a dataset from the Northeastern 

University surface defect database (NEU), created by Song et al. This dataset contains 

six typical surface defects of hot-rolled strip steel: inclusions (In), patches (Pa), cracks 

(Cr), pits (Ps), roll marks (RS), and scratches (Sc). Figure 10 illustrates sample images 

of these defects. The database consists of 1800 images, with 300 samples for each 

defect type, and each image has a resolution of 64×64 pixels. The dataset is well-

balanced and offers a sufficient number of samples for training and testing. 

In this experiment, we split the NEU dataset into a training set and a test set using a 

7:3 ratio. This resulted in 1260 images in the training set and 540 images in the test set, 

providing a robust evaluation of the model’s generalization performance. The model 

structure was kept unchanged, with the only adjustment being the modification of the 

fully connected layer to accommodate six output neurons corresponding to the six 

defect classes in the NEU dataset. 

Training and Experimental Setup 

For training, we set the number of epochs to 600 to ensure thorough feature learning 

and parameter adjustment. To evaluate the effectiveness of our model, we conducted a 
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comparative analysis with YOLOv3 and YOLOv5 under the same experimental 

conditions. The parameters for all models were kept consistent, and the same 7:3 dataset 

split was used across all experiments to ensure a fair comparison. 

In Pa Cr Ps Rs Sc  
Fig. 10.  NEU Data set sample image 

Table 3 presents a comparison of our model’s performance with YOLOv3 and 

YOLOv5 on the NEU dataset. The results indicate that our model demonstrates superior 

generalization ability in identifying various defect types, especially in scenarios 

involving complex backgrounds and low-contrast defects. The integration of the 

attention feature fusion module enables the model to effectively leverage shallow 

features, improving both detection accuracy and robustness. 

Table 4  Model generalization performance experiment 

Model Map50/% 
Map50-

95/% 

Model 

Size/MB 

YOLOV3 61.5 27.6 4.78 

YOLOV5 70.7 35.2 3.73 

Methods in this article 76.0 42.1 6.34 

It shows that compared with other algorithms, the performance of Map50 and 

Map50-95 have been significantly improved. 

4         Conclusion 

Aiming at the problem of sample category imbalance in rail surface defects, this 

paper proposes a method for dealing with the imbalance rail surface defect recognition 

problem based on an attention feature fusion network and verifies the effectiveness of 

the method on the imbalance defect dataset. The specific research content is 

summarized as follows: 

(1) To address the challenge of detecting small defects, we propose a novel 

deformation attention-enhanced bottleneck module to enhance detection performance. 

This module incorporates a dual-scale context mechanism to capture both global and 

local information, specifically improving the detection of small targets. 

(2) To mitigate the issue of underutilizing shallow semantic features of defects, we 

have refined the attention mechanism. We introduce an adaptive spatial and channel 

enhancement module that constructs a multi-level comprehensive representation by 

leveraging both spatial and channel attention. This approach excels in small target 

detection tasks by effectively extracting and distinguishing multi-level semantic 

features of defects. 

(3) To address the problem of redundant features in the defect background, the 

network structure is improved. A spatial grouping attention fusion pyramid is proposed, 
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which can hierarchically extract input features at multiple scales, and multiple 

convolution kernels and grouped convolution structures are introduced to adapt to 

features of different scales. 

Future research will focus on diversifying YOLO model types by drawing 

inspiration from the information processing mechanisms of the cerebral cortex and 

human visual cortex. By exploring different supervised learning algorithms and 

designing biologically plausible YOLO network models, we aim to achieve superior 

recognition results. 
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