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Abstract. Sensors occupy a pivotal role in indoor fire detection, and any mal-

function within their operation can potentially escalate into severe accidents. 

Multi-sensor networks utilized in indoor fire early warning systems are inher-

ently characterized by their high dimensionality and intricate linear interdepend-

encies, presenting substantial operational complexities. To address these com-

plexities, the paper introduces a fault diagnosis method based on Kernel Principal 

Component Analysis combined with Autoencoders (KPCA-AE). This methodol-

ogy harmoniously integrates KPCA and AE, where KPCA is utilized to reduce 

the dimensionality of the data, thereby facilitating the training of the AE model. 

The proposed method adeptly and precisely identifies faults based on reconstruc-

tion errors, introducing a novel and effective paradigm for fault diagnosis in in-

door fire sensors. 

Keywords: Fault diagnosis; Sensors; Autoencoder; Kernel principal component 
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1 Introduction 

Due to the small indoor space and dense population, indoor fires can easily cause 

significant losses. Therefore, the prevention of indoor fire is crucial. Indoor fire warn-

ing relies on sensors. If there is fault in sensors, it will lead to data acquisition errors 

and monitoring failure, resulting in serious consequences [1]. Consequently, research 

on fault diagnosis method of indoor fire sensor has an important practical significance. 

Common sensor fault diagnosis methods are mainly divided into model-based, 

knowledge-based and data-driven methods [2]. Due to the complexity of sensor char-

acteristics and mechanism model, it is difficult to deal with complex sensor fault sorely 

through modeling or empirical knowledge. Sensors can record abundant data, which 

can reflect the state of the sensor. Therefore, using data-driven method to extract the 

hidden information of data has become the primary means to diagnose sensor fault. 

Among data-driven fault diagnosis methods, the method based on machine learning 

is the most widely used, focusing on support vector machines and neural networks. 

Support vector machine (SVM) is a classifier with good generalization ability [3]. 

Its performance is greatly affected by parameters, so appropriate parameters should be 

used in training. Aiming at the defect of many fixed parameters of traditional SVM, Qi 

[4] proposed a SVM fault diagnosis method based on snake optimization algorithm. It 
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optimized fixed parameters within a range of values and avoided getting stuck in local 

extrema, thereby improving the classification accuracy of SVM. To address the issue 

of parameter selection and validation, Li N et al. [5] proposed a signal recognition 

method based on multi-scale wavelet transform, using an improved particle swarm op-

timization algorithm for parameter optimization. By optimizing the penalty parameters 

and hyperparameters, the method can achieve higher recognition accuracy. However, 

the advantage of SVM method is to deal with small samples. When faced with massive 

data, the training time of SVM increases significantly, resulting in low efficiency. 

Neural network is more suitable for processing large sample data. In recent years, 

researchers tend to combine neural networks with other algorithms, explore fault diag-

nosis methods with better comprehensive performance. Ma et al. [6] designed a sensor 

data calibration module in convolutional networks, introducing jump connections and 

auxiliary loss functions to calculate the fault classification and fault parameters simul-

taneously. Huan W et al. [7] proposed a residual pulse neural network that optimizes 

gradient transfer efficiency to achieve deep-level pulse information encoding, intro-

duced a membrane learnable mechanism. This network demonstrates excellent infor-

mation processing potential. Neural network has outstanding performance in fault clas-

sification, with good real-time performance, but it usually requires a large amount of 

data for training. For the problem of insufficient training caused by small samples, Sun 

[8] used deep convolutional generative adversarial networks to learn from imbalanced 

samples, effectively expanding the small dataset. Compared to SVM, neural network is 

able to dynamically learn and update parameters, resulting in stronger robustness. 

In general, data-driven method is highly consistent and effective for sensors with 

rich data. This method can excavate hidden features in data and identify faults, which 

has become an important research direction in the field of fault diagnosis. 

Aiming at problems of high data dimension, complex data correlation, and difficulty 

to establish mathematical model of indoor fire sensor, this paper proposes an indoor 

fire sensor fault diagnosis method based on KPCA-AE algorithm. This method aims to 

effectively reduce the data dimension, improve the efficiency of model training, and 

accurately diagnose sensor faults. 

2 Principle of Fault Diagnosis Model Based on KPCA-AE 

Autoencoder (AE) [9] is a commonly used shallow neural network in data-driven 

sensor fault diagnosis methods. It is an unsupervised learning algorithm that has out-

standing advantages in processing unlabeled datasets. Therefore, AE is selected as the 

training algorithm for the fault diagnosis model. The essence of the encoder in AE is 

the principal component analysis method. Previous studies usually used AE as a feature 

extraction tool, and then combined with other classification algorithms to diagnose 

faults. However, for the high-dimensional dataset in this paper, it is complex to directly 

use AE for feature learning, which requires a long training time and is prone to over 

fitting. Since kernel principal component analysis (KPCA) excels in nonlinear feature 

extraction, whereas AE is adept at feature learning and data reconstruction, this paper 
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incorporates KPCA as a preprocessing step for AE. This significantly enhances the 

ability to reduce data dimensionality and improves the efficiency of AE training. 

The workflow of KPCA-AE model fault diagnosis is shown in Fig. 1. The input of 

the model is the high-dimensional time series data of the sensor network. Firstly, the 

input data is filtered and standardized for preprocessing. Then, KPCA is applied to ex-

tract features and reduce the high-dimensional data to 4 dimensions. The features are 

then reconstructed by AE model, comparing the reconstruction error with the fault 

threshold to quickly determine whether the sensor is faulty and annotate the faulty data. 

 

Fig. 1. Workflow diagram of fault diagnosis model 

2.1 Data Source 

The dataset used in this paper is from the National Institute of Standards and Tech-

nology (NIST) Building and Fire Research Laboratory's experiments on different fire 

alarms responding to indoor fires [10]. This experiment recorded timing data of all sen-

sors during the fire extinguishing process. The final results of 24 experiments were 

saved in 24 datasets, totaling 59,421 sets of temporal data. 

Each dataset contains sensors data of a fire extinguishing experiment. Sensors are 

distributed throughout the house. At the same time, due to the need of repeated tests, 

sensors of the same kind are set at the same position to reduce the error. Therefore, each 

experimental dataset contains over 110 dimensions, making it a high-dimensional da-

taset. 
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In addition, there are complex linear correlations between data, which will produce 

redundant information. Directly training will increase the complexity of the model and 

also reduce its accuracy. Therefore, it is necessary to extract features of original data, 

remove the redundant information, and reduce data dimensions. 

2.2 Data Preprocessing 

In the actual environment, external interference can generate noise data. Therefore, 

it is necessary to filter the data. In addition, the dimensions of data recorded by different 

sensors are inconsistent, and the values of various sensors differ greatly. As a result, it 

is also essential to standardize the data and unify the dimensions. To ensure the relia-

bility of the results, SG filter is used to eliminate the noise of the original data, followed 

by the Z-score method to standardize the data. After data preprocessing, a clean and 

standardized dataset will be obtained. 

2.3 Data Dimensionality Reduction 

The sensor dataset contains a large number of features. It is necessary to reduce the 

data dimension and retain only the main features of the data, which is convenient for 

subsequent learning and training. KPCA is a nonlinear feature extraction method. The 

process of the KPCA algorithm is as follows: 

KPCA dimension reduction algorithm steps.  

Step 1. Complete the preprocessing of the original data. Obtain the processed dataset 

, 1 2
ˆ ˆ ˆ ˆ( , , , ), 1,2, ,24i m n nX x x x i   . Where, i is the number of the dataset, and the ith 

dataset has m time series data and n dimensions. 

 Step 2. Introduce the kernel function K, which is an important parameter of KPCA 

algorithm, and can map the original nonlinear dataset to a higher dimensional space. In 

this paper, the Gaussian kernel function is selected, and the function form is as follows. 

  
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Where x and y are two arbitrary samples in the dataset, which are used to calculate the 

spatial distance between them, and σ is the width parameter of the Gaussian kernel 

function. Calculate the kernel matrix K, centralize it so that the average value of each 

row and column of the matrix is 0, then obtain the centralized kernel matrix Kc. 

Step 3. Calculate the eigenvalues λj and corresponding eigenvectors uj of the Kc. 

Step 4. Determine the principal components. The first k（k<n）principal compo-

nents are selected according to the eigenvalues, which correspond to the most important 

features in the data. The principal components are determined by the cumulative con-

tribution rate G(m) of eigenvalues. 
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When taking G(m)≥0.7, the first k eigenvalues λ1≥λ2≥…≥λk are selected so that the 

cumulative contribution rate is more than 70%, and the corresponding k principal com-

ponents are determined to obtain the orthogonal basis, represented as U=(u1, u2,…uk). 

U is a low dimensional space with dimension k, which is composed of the first k eigen-

vectors with the largest contribution of the Kc matrix. 

Considering the proportion of contribution, takes k=4 to make G(m)＞70%. 

Step 5. Construct the projection matrix, convert the data into the 4-dimensional new 

space, and obtain the principal components, as shown in the formula (3). 

 cY U K  (3) 

Among them, as a 4-dimensional data, Y matrix is the dimension reduction result, and 

4-dimensional time series data are the four principal components of the original data. 

Dimension Reduction Results and Analysis.  

After the dimension reduction, a low-dimensional representation of the high-dimen-

sional dataset is obtained. At the same time, the low-dimensional representation is 

highly abstract, and the actual physical meaning disappears. Therefore, the principal 

components are numbered from high to low according to their proportion of contribu-

tion. 

Taking the dataset named sdc06 as an example, the sdc06 dataset contains 117 di-

mensions, which are reduced to 4 dimensions using the KPCA method. The four prin-

cipal component time series data curves are shown in Fig. 2. 

 

Fig. 2. Four principal component time series data curves 

Draw the pie chart of the contribution of each component in the sdc06 dataset after 

dimension reduction, as shown in Fig. 3. Components are ranked from large to small 
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according to their contribution, and the four components with the largest contributions 

are selected as the dimensionality reduction results. 

It can be seen that the sum of the four principal components accounts for more than 

70% of all components, while the remaining 113 dimensions account for 25% in total, 

with their respective proportions less than 1%. The remaining components can be ig-

nored as minor. Through KPCA dimensionality reduction, the high-dimensional origi-

nal data is reduced to four dimensions. Using the 4 principal components to describe 

the dataset can not only retain the main characteristics of the dataset, but also reduce 

the difficulty of subsequent model training. 

 

Fig. 3. The proportion of contribution of components 

3 Training of Sensor Fault Diagnosis Model Based on AE 

3.1 Dataset Partitioning 

In order to avoid the problem of over fitting, sufficient experiments are needed. The 

common machine learning model evaluation method: k-fold cross validation method 

[11] is selected to divide the dataset into training and validation sets. 

 

Fig. 4. 6-fold cross validation division diagram 
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The k value is generally taken as 3-10. In order to facilitate the division of 24 groups 

of sample data, let k=6 in this paper. On the original dataset, 24 groups of sample data 

are randomly divided evenly six times, one of which is used as the validation set and 

the other five as the training set. A round of training is conducted for each randomly 

divided training set, and the training results after 6 times of division are obtained. Gen-

erally, the average of the evaluation results is taken to obtain the final reconstruction 

error. The 6-fold cross validation dataset division diagram is as shown in Fig. 4. 

3.2 AE Training Process 

AE training is an iterative process, and its essence is the training of neural network. 

It is necessary to correctly organize the data, set up the appropriate loss function and 

optimizer [12]. The training steps are as follows: 

(1) Data preparation and standardization. 

After the KPCA data dimensionality reduction method, the dimension of the original 

data is reduced to four dimensions. The training set and the validation set are divided 

by the 6-fold cross validation method, and the training set is represented by Y, 

 1 2 3 4, , ,Y y y y y . That is, the input layer has four nodes. 

(2) AE neural network creation. 

Set the parameters of AE neural network and build autoencoder. The encoder and 

decoder of AE use sigmoid activation function, as shown in formula (4). Input the train-

ing set data samples to the encoder, the encoder maps the data to the hidden layer. The 

hidden layer node is set to 7, that is, the encoder can learn 7-dimensional features. 

  
1

1 x
f x

e



 (4) 

The encoded representation of the hidden layer is sent to the decoder, and the de-

coder restores it, represented by  1 2 3 4, , ,Y y y y y . Y  is the reconstruction result of 

Y by AE. They have the same data structure, so the output layer is also 4 nodes.  

(3) Loss calculation. 

The model loss between the reconstructed data and the original data is calculated. 

Mean square error (MSE) is used as the loss function. 

  
2

1

1
MSE

m

i

Y Y
m 

   (5) 

Where m is the amount of data in one dimension of the data sample. The data whose 

reconstruction error exceeds the error threshold is marked as fault data.  

(4) Back propagation. 

Back propagation algorithm is applied to adjust the weights and parameters of en-

coder and decoder to minimize the loss. 

(5) Cycle training. 

According to the training process, set the maximum number of iterations n. The 

number of iterations per round of training is about 2000. Setting the maximum number 

of iterations n=4000 can obtain appropriate reconstruction errors and avoid overfitting 
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or underfitting problems. Repeat steps above until the indicators of AE or reaches the 

limit of the maximum number of iterations n. 

After training, the performance of AE will be verified by the validation set. The final 

indicator requirement is to achieve the accuracy of fault diagnosis model more than 

95%, and the proportion of fault data in normal dataset is less than 5%. 

 

Fig. 5. AE model performance 

The effect of one round of AE model training is shown in Fig. 5. It shows that the 

number of iterations is 1,921, and the training of the AE model is effective. The perfor-

mance reaches its optimal value within the maximum number of training epochs, and 

there is no sign of overfitting or underfitting, so the dataset is fully utilized to complete 

the training. 

3.3 Fault Diagnosis Threshold Setting Based on MSE 

In the training process, it is necessary to optimize the AE structure to achieve ideal 

experimental results. An important evaluation index of AE model performance is MSE. 

MSE can be used to set a fault threshold and judge whether the input is abnormal. The 

process of determining the threshold is as follows: 

(1) Using the empirical formula: threshold = average reconstruction error + k × 

standard deviation of reconstruction error. The average reconstruction error refers to 

the average value of the reconstruction error of all samples; Standard deviation recon-

struction error refers to the standard deviation of reconstruction error of all samples; k 

is a parameter to control the tightness of the threshold. The larger the value of k, the 

looser the threshold, and only obvious abnormal data can be screened out; The smaller 

the value of k, the stricter the threshold, and more abnormal data can be filtered out. 

(2) Based on the experimental and indicator requirements, the threshold is adjusted. 

The normal dataset is used as input during the training process, and the error rate needs 

0 500 1000 1500 

Iterations 

100 

101 

102 

P
er

fo
r
m

a
n

ce
 i

n
d

ic
a
to

r 
(m

se
sp

a
rs

e)
 The best performance is 1.2989 after 1921 iterations 

Training performance 

Best performance 



 Research on Sensor Fault Diagnosis Method Based on KPCA-AE Algorithm 9 

to be controlled within 5%. The error threshold is obtained by adjusting the coefficient 

according to the reconstruction results of the validation set. 

The error threshold parameters are as shown in Table 1. 

Table 1. Error threshold parameters 

Average reconstruction error Standard deviation reconstruction error Threshold 

0.3498 0.0489 0.7410 

4 Simulation Experiment of Indoor Fire Sensor Fault Diagnosis 

4.1 Effect of Sensor Failure on Data 

The influence of sensor faults is mainly reflected in failure fault, offset fault, gain 

fault, impact fault, etc. [13] Sensor failure causes the detection to be missing, and the 

output data usually appears as 0 or NaN. Offset fault causes a certain numerical offset 

on the basis of the original data. Gain fault has a gain effect on the original data. Impact 

fault is the peak of time series data curve. 

The four types of simulation faults are randomly combined into the normal dataset, 

and then the fault diagnosis experiment is carried out. 

4.2 Experimental Results and Indicator Analysis  

The fault diagnosis results of the normal dataset named sdc07 are as shown in Fig. 

6 and Fig. 7. 

Fig. 6 is the reconstruction error of each point of sdc07 after fault model diagnosis. 

Fig. 7 is the time series curve of the four principal components. The location of the 

fault is marked with a hollow circle. The dotted line represents the error threshold, and 

the data points with reconstruction error higher than the threshold are marked as fault 

data. Among the 570 time series data, the number of fault points was 17, accounting 

for 2.98%, and within 5%, which is a normal dataset.  

 

Fig. 6. Fault diagnosis reconstruction error results for normal datasets 
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(a) Time series data of principal component 

1  

(b) Time series data of principal component 

2 

  
(c) Time series data of principal component 

3 

(d) Time series data of principal component 

4  

Fig. 7. Time series data of four principal component for fault diagnosis in the normal dataset 

Fig. 8. Result of first fault diagnosis after adding 100 fault points 

100 fault points were added to the end of the normal dataset sdc07. The result of the 

fault diagnosis simulation experiments is shown in Fig. 8. A total of 98 new ones were 

  
(a) Reconstructing error results (b)  Time series data of principal component 1  
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added, that is, the accuracy of fault diagnosis was 98%. The subsequent experimental 

results are recorded in Table 2. 

Table 2. Add 100 fault point sensor fault diagnosis results 

No. Number of fault 

points  

Number of new 

faults  

Fault diagnosis ac-

curacy  

Detection 

time/s  

1 115 98 98% 5 

2 104 87 87% 6 

3 117 100 100% 6 

4 116 99 99% 6 

5 112 95 95% 5 

6 117 100 100% 7 

7 111 94 94% 6 

8 116 99 99% 6 

9 116 99 99% 5 

10 117 100 100% 6 

Average 114.1 97.1 97.1% 5.8 

500 fault data were added to another larger normal dataset sdc11, which has 2,625 

sampled data and 93 fault points. The rate of the abnormal data is 3.54%. The experi-

mental results of fault diagnosis are recorded in Table 3. 

Table 3. Add 500 fault point sensor fault diagnosis results 

No. Number of fault 

points  

Number of new 

faults  

Fault diagnosis ac-

curacy  

Detection 

time/s  

1 583 490 98.0% 70 

2 593 500 100.0% 77 

3 549 456 91.2% 69 

4 593 500 100.0% 89 

5 563 470 94.0% 94 

6 592 499 99.8% 81 

7 563 470 94.0% 83 

8 587 494 98.8% 83 

9 568 475 95.0% 113 

10 593 500 100.0% 112 

Average 578.4 485.4 97.1% 87.1 

The average accuracy of fault diagnosis of the two groups of experiments was more 

than 95%, and the standard deviation of the accuracy was 4.1% and 3.2% respectively. 

In the experiment, the average fault diagnosis time for each data was 0.01s. The fault 

diagnosis time is far less than the sampling period, which ensures that the fault diagno-

sis can be completed quickly in a very short time after the data is collected. 
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5 Conclusion 

Addressing the challenges posed by high-dimensionality and intricate data correla-

tions within indoor fire sensor data, this paper presents a sensor fault diagnosis model 

based on the KPCA-AE algorithm. This methodology adeptly extracts salient features 

while significantly reducing data complexity. Consequently, it streamlines the training 

process of the fault diagnosis model, alleviates computational demands, and simplifies 

model intricacy, ultimately yielding precise and reliable fault diagnosis outcomes. No-

tably, the KPCA-AE method demonstrates a fault diagnosis accuracy exceeding 95% 

when confronted with complex sensor data, enabling it to efficiently and promptly con-

duct fault diagnosis for extensive sensor datasets with stability. 
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