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Abstract. To ensure reliable predictions for various applications, it is
essential to understand the impact of Gaussian and non-Gaussian noise
on data-driven modeling. Gaussian noise has been a convenient assump-
tion for model development, but real-world scenarios sometimes defy
Gaussian assumptions. Our research compared the performances of the
direct and parametric data-driven modeling methods with Gaussian and
non-Gaussian sensor noise. The direct data-driven modeling methods
that are evaluated are direct data-driven methods with pulse input-
output dataset and direct data-driven methods with step input-output
dataset. The parametric models that are evaluated are the Output Error
(OE), Autoregressive with Moving Average and Exogenous Input (AR-
MAX), Autoregressive with Exogenous Input (ARX) and Box-Jenkins
model (BJ). The result shows that the performance of the direct and
the parametric data-driven modeling methods deteriorates under non-
Gaussian noise.

Keywords: Data-driven modeling · Gaussian Noise · non-Gaussian Noise
· Model performance

1 Introduction

In order to simulate system dynamics and ensure that predictions are reliable
and applicable to a wide range of applications, it is essential to comprehend how
Gaussian and non-Gaussian noise affect data-driven modeling. For a considerable
time, Gaussian noise with symmetrical and well-behaved properties has been a
convenient assumption in model development. However, the real world frequently
poses obstacles that defy Gaussian predictions, such as outliers, large tails, and
asymmetrical distributions. The sensitivity of data-driven modeling techniques
to non-Gaussian noise is crucial for making reliable and accurate predictions.
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Models based purely on Gaussian assumptions may fail to capture the com-
plexities of dynamical systems, resulting in inaccurate parameter estimations
and inferior performance. In the realm of data-driven modeling, foundational
approaches like the Output Error (OE), Autoregressive with Moving Average
and Exogenous Input (ARMAX), Autoregressive with Exogenous Input (ARX),
and Box-Jenkins model (BJ) have traditionally assumed Gaussian conditions.
However, the growing recognition of the impact of non-Gaussian noise prompts
a reevaluation of these methods.

Recent research introduces novel techniques that explicitly address non-Gaussian
characteristics [1, 2] and has emphasized the importance of investigating the ef-
fects of non-Gaussian noise in data-driven modeling. Literature highlights how
heavy-tailed noise affects parameter estimation accuracy [3], exposing possible
flaws in traditional modeling techniques. The implications of non-Gaussian noise
for volatility modeling are investigated in fields such as financial time series [4],
illuminating the shortcomings of Gaussian-based noise assumptions in describing
extreme occurrences. Robust techniques that can handle departures from Gaus-
sian assumptions are essential, as evidenced by new insights into the difficulties
presented by non-Gaussian noise in dynamic system data-driven modeling [2].
Some researchers also point out the necessity of evaluating the effect of non-
Gaussian noise for parameter estimation methods in fault detection systems
[5, 6].

Even though there are great advancements in machine learning and data sci-
ence, most industrial applications use traditional data-driven modeling methods
because of their simplicity and effectiveness compared to the complexity and
implementation issues associated with machine learning models. For example,
ARMAX is used for monitoring the internal level of large-scale renewable en-
ergy units in the grid [7]. Because dynamical systems are always time-varying,
the model must adapt with time. The traditional data-driven methods like the
Output Error (OE), Autoregressive with Moving Average and Exogenous In-
put (ARMAX), Autoregressive with Exogenous Input (ARX), and Box-Jenkins
model (BJ) give simple but feasible results for many industrial applications [8, 9].
As a result, evaluating the traditional data-driven modelings under Gaussian and
non-Gaussian noise has practical advantages for industrial processes.

The performance of conventional modeling techniques’ response to Gaus-
sian and non-Gaussian noise is evaluated. In-depth analysis of foundational
approaches like the direct approach, Output Error (OE), Autoregressive with
Moving Average and Exogenous Input (ARMAX), Autoregressive with Exoge-
nous Input (ARX), and Box-Jenkins model (BJ) when the dataset for modeling
has Gaussian and non-Gaussian noise is carried out. To aid the comparative
analysis, we use the second-order system given by

H(z) =
0.1129z + 0.1038

z2 − 1.562z + 0.7788
. (1)

The whole comparative analysis is divided into two sections. First, we will eval-
uate the performance of direct pulse response estimation methods to Gaussian
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and non-Gaussian noise. Then, we present an in-depth evaluation of parametric
data-driven methods under Gaussian and non-Gaussian noise.

2 Direct pulse response estimations techniques

The direct approach of data-driven modeling develops the dynamical system’s
impulse response using pulse response or step response data collected from the
dynamical system. The input that can be used to collect the dataset can be
either a scaled discrete pulse input (see Equation (2)) or a scaled step input (see
equation (3)).

u[k] = αδ[k] =

{
α, k = 0

0, k ̸= 0
, (2)

u[k] = αs[k] =

{
α, k ≥ 0

0, k < 0
. (3)

Here, k is the discrete time, u[k] is the pulse input, α is a finite real number,
δ[k] is the Dirac delta function and s[k] is the unit step function.

If the data is collected using the scaled discrete pulse, the unit-pulse response
coefficients can be estimated as:

ǧ[k] =
y[k]

α
+

v[k]

α
. (4)

Here, v[k] is a measurement noise and ǧ[k] is the estimated unit-pulse response
of the system. In order to reduce the effect of the noise, the value of α must be
large enough to eliminate the noise. However, most systems do not allow large
enough scaled pulse input to completely remove the effect of the noise.

If the scaled discrete step signal is used to collect the input-output data, the
unit-pulse response can be given by

ǧ[k] =
(y[k]− y[k − 1])

α
+

(v[k]− v[k − 1])

α
. (5)

The effect of the noise on the estimated unit-pulse response can be canceled if it
is a slowly varying signal. If the noise is Gaussian, its effect will not be canceled.
The direct data-driven modeling technique is not widely used. However, many
engineers occasionally employ it to gain an overview of any black box system.

To evaluate the performance of the direct approach to Gaussian and non-
Gaussian noise, input-output data is collected using pulse and step input from
the discrete dynamic system given in Equation 1. In practice, the transfer func-
tion of the system is unknown, and the data will be collected from the dynamic
system. Then, the unit-pulse response is estimated using the direct approach.
In the first experiment, a Gaussian noise of zero mean and variance of 0.01
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(N (0, 0.01)) is added to the input-output data. In the second experiment, a
Gaussian noise of zero mean and variance of 0.05 (N (0, 0.05)) was added to the
input-output dataset. In the third experiment, a correlated noise (non-Gaussian
noise) is added to the input-output dataset. The non-Gaussian noise is generated
by filtering Gaussian noise through a low-pass filter. The low-pass filter has a
pole at 0.9312± 0.3436i.

3 Parametric data-driven techniques

As the size of the unit-pulse response increases, the difficulty of estimating the
unit-pulse response increases. Parametric data-driven modeling attempts to re-
duce the number of parameters that must be estimated. The parametric data-
driven modeling technique begins with the assumption of a transfer function of
the dynamic system to decrease the number of parameters estimated. The gen-
eral transfer function model for the parametric data-driven techniques is given
by:

y[k] = G(q)u[k] +H(q)e[k], i.e.,

G(q) =
B(q)

A(q)
and H(q) =

C(q)

D(q)

(6)

where G(q) is the transfer function for the input and H(q) is the transfer function
for the noise in the system. In parametric data-driven modeling A(q), B(q),
C(q) and D(q) will be identified provided that they exists and nk (the number
of delays), na (the order of A(q)), nb (the order of B(q)), nc (the order of
C(q)) and nd (the order of D(q)) will also be determined. q is a time-domain
one-period advance operator (q−1 is a time-domain one-period delay operator).
The standard parametric data-driven modeling forms are the OE model, the
ARMAX, the ARX, and the BJ.

The OE standard form is given by:

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) = 1,

y[k] =
B(q, θ)

A(q, θ)
u[k] + e[k],

θ = [a1 . . . ana
b1 . . . bnb

] ,

A(q, θ) = 1 + a1q
−1 + . . .+ ana

q−na ,

B(q, θ) = 1 + b1q
−1 + . . .+ bnb

q−nb

(7)
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The ARMAX standard form is given by:

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

C(q, θ)

A(q, θ)
,

A(q, θ)y[k] = B(q, θ)u[k] + C(q, θ)e[k],

θ = [a1 . . . anab1 . . . bnb
] ,

A(q, θ) = 1 + a1q
−1 + . . .+ ana

q−na ,

B(q, θ) = 1 + b1q
−1 + . . .+ bnb

q−nb ,

C(q, θ) = 1 + c1q
−1 + . . .+ cncq

−nc .

(8)

The ARX standard form is given by:

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

1

A(q, θ)
,

A(q, θ)y[k] = B(q, θ)u[k] + e[k],

θ = [a1 . . . ana
b1 . . . bnb

] ,

A(q, θ) = 1 + a1q
−1 + . . .+ ana

q−na ,

B(q, θ) = 1 + b1q
−1 + . . .+ bnb

q−nb .

(9)

The BJ standard form is given by:

G(q, θ) =
B(q, θ)

A(q, θ)
, H(q, θ) =

C(q, θ)

D(q, θ)
,

y[k] =
B(q, θ)

A(q, θ)
u[k] +

C(q, θ)

D(q, θ)
e[k].

θ = [a1 . . . ana
b1 . . . bnb

c1 . . . cnc
d1 . . . dnd

] ,

A(q, θ) = 1 + a1q
−1 + . . .+ anaq

−na ,

B(q, θ) = 1 + b1q
−1 + . . .+ bnb

q−nb ,

C(q, θ) = 1 + c1q
−1 + . . .+ cncq

−nc ,

D(q, θ) = 1 + d1q
−1 + . . .+ dnd

q−nd .

(10)

3.1 Parameter estimation and tests for the parametric data-driven
techniques

Initializing the order of the model is the first stage in creating a data-driven
parametric model of a system. The quickest method for estimating the delay
(nk) is to use the cross-correlation between the output and the input and count
the number of periods it takes the signal to rise above the noise floor. To estimate
the system model order (na, nb, nc and nd), the simplest thing to do is to use
frequency input-output data and estimate the order of the system from the bode
plot.
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To determine the model’s parameters for prediction purposes, the least-
square solution is used. The modeling error (residual) for a 1-step a head pre-
diction is given by

ϵ[k] = y[k]− ŷ[k|k − 1] (11)

where ŷ[k|k−1] is the predicted value of the output at time k given measurements
of the output up until (and including) time k−1. The least-square cost function
(V (θ)) can be given by:

VN (θ) =

N∑
k=1

ϵ2[k; θ],

θ̂ = argmin
θ

VN (θ).

(12)

The least-square solution for the ARX, ARMAX, OE, and BJ is described in
[10, 11].

Several tests can be performed to validate models. The first desirable quality
of the residue is that it is normally distributed and has a zero mean (at least
symmetric). Typically, the residue’s histogram is used to examine this. We can
also try to estimate the residuals’ variance (σ2)

σ2 =
1

N

N∑
k=1

ϵ2[k] (13)

The residue whiteness test (autocorrelation of the residue signal) is calculated
using the following Equation:

R̂N
ϵ [τ ] =

1

N

N∑
k=1

ϵ[k]ϵ[k − τ ]. (14)

We desire the autocorrelation of the residue to be zero at all values of τ ̸= 0.
If it is zero, the model has successfully acquired all of the required data in the
input-output dataset. This is demonstrated by assessing:

rN,M =

√
N

R̂ϵ[0]

[
R̂ϵ[1] R̂ϵ[2] . . . R̂ϵ[M ]

]T
(15)

Then, according to the central limit theorem, as N → ∞, rN,M will be normally
distributed with zero mean and unit variance [10, 11]. If we sum together squares
of rN,M , the resulting function is

ζN,M =
N(

R̂N
ϵ [0]

)2

M∑
τ=1

(
R̂N

ϵ [τ ]
)2

. (16)

This is a chi-squared distribution with n degrees of freedom [10]. The overall test
resides in checking if the chi-squared distribution is χ2(M). That is, by checking
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ζN,M < χ2
α(M). For 95% confidence interval, we can use the ±1.96 bounds on

each element of rN,M [10].
The cross-correlation test assesses the correlation between the input and

residual data by employing Equation (17). If the input is correlated with the
residual values, the estimated model did not capture the relationship in the
input-output data.

R̂N
ϵu[τ ] =

1

N

N∑
k=1

ϵ[k]u[k − τ ]. (17)

We desire R̂N
ϵu[τ ] to be roughly zero for τ > 0. As N → 0 it can be shown

that
√
(N)R̂ϵu[τ ] is normally distributed, with zero mean and variance Pr =∑∞

−∞ Rϵ[k]Ru[k]. Normality test on R̂ϵu[τ ] can be performed by checking |R̂ϵu[τ ]| ≤

1.96
√

(Pr

N ) for all τ [10].

4 Result and Analysis of the Experiment

4.1 The performance of direct pulse response estimations
techniques to Gaussian and non-Gaussian noise.

The performance of the direct pulse response estimation techniques deteriorates
under non-Gaussian noise. Figure 1 shows that noise has a big impact on the
direct data-driven modeling technique. As can be seen from Figure 1, the direct
data-driven modeling can’t give good modeling in the presence of very small
Gaussian noise and non-Gaussian noise. As the Gaussian noise variance is in-
creased from 0.01 to 0.05, the performance of the direct pulse response estimation
techniques deteriorates. In the case of non-Gaussian noise, the performance of
the direct pulse response estimation technique deteriorates further. This shows
that the direct pulse response estimation techniques face challenges under non-
Gaussian noise.

4.2 The performance of parametric data-driven techniques under
Gaussian and non-Gaussian noise

The parametric data-driven modeling method is used to identify the system given
in Equation (1) with Gaussian and non-Gaussian sensor noise. The non-Gaussian
sensor noise was generated by passing a Gaussian noise through a low-pass filter.
The low-pass filter has a pole at 0.9312 ± 0.3436i. The signal-to-noise power is
set to 0.25%. Several tests are performed on the error (residual) to quantify the
validity of the data-driven models. The mean and variance test on the residue, the
whiteness test on the residue and the cross-correlation test between the residue
and the input are the most prevalent tests. The performance of the parametric
data-driven modeling result with the Gaussian and non-Gaussian sensor noise
is shown in Table 1, Table 2, Figure 3, Figure 5, Figure 2, Table 3, Table 4 and
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(a) Pulse input-output dataset with
Gaussian (N (0, 0.01))

(b) Step input-output dataset with
Gaussian (N (0, 0.01))

(c) Pulse input-output dataset with
Gaussian (N (0, 0.05))

(d) Step input-output dataset with
Gaussian (N (0, 0.05))

(e) Pulse input-output dataset with
non-Gaussian

(f) Step input-output dataset with non-
Gaussian

Fig. 1: Direct data-driven modeling with Gaussian noise and non-Gaussian noise
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Table 5. The autocorrelation and cross-correlation plots in Figure 3 show that
the autocorrelation of OE has 20 values and ARX has 5 values beyond the 95%
confidence intervals. This shows that the residual value of the ARX model has
correlations with the input and with itself, showing that the model did not fully
capture the input-output data. ARMAX model performs better than OE and
ARX. The performance of BJ is comparatively better than that of the other
models.

In the case of the non-gaussian sensor noise case, it can be observed that the
bode phase plots in Figure 5 above the cross-over frequency did not capture the
actual model response. The one that has closer performance in the bode phase
plot above the cross-over frequency is again the BJ model. In Table 1, Table 3,
and Table 4, we also see that the BJ has close parameter values to the actual
model compared with the other parametric models because the BJ model uses
unique poles and zeros for modeling the effect of the reference input and the
noise input. In the case of non-gaussian noise, the performance of all the model’s
frequency response plots shows it can not capture the high-frequency response
of the actual plant.

(a) ARX (b) BJ, ARMAX and OE

Fig. 2: Discrete Impulse Responses

Table 1: Parameter of G(q) for Gaussian Noise case
b0 b1 b2 a0 a1 a2

Actual 0 0.1129 0.1038 1 -1.562 0.7788
ARX 0 0.1309 0.1538 1 -0.689 0.0154
ARMAX 0 0.1144 0.0941 1 -1.569 0.787
BJ 0 0.1153 0.0940 1 -1.569 0.7872
OE 0 0.1148 0.0948 1 -1.568 0.7869
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(a) Rresidual Histogram for ARX (b) Rresidual Histogram for ARMAX

(c) Rresidual Histogram for BJ (d) Rresidual Histogram for OE

Fig. 3: Rresidual Histogram

Table 2: Mean and Variance for Gaussian Noise Case
Atual ARX ARMAX BJ OE

Mean -0.0221 -0.0087 -0.0272 -0.0281 -0.0249
Variance 0.1118 0.2206 0.1085 0.1091 0.1083

Table 3: Parameter of G(q) for Non-Gaussian Noise case
b0 b1 b2 a0 a1 a2

Actual 0 0.1129 0.1038 1 -1.562 0.7788
ARX221 0 0.1200 0.1106 1 -1.199 0.4338
ARMAX2221 0 0.1181 0.0868 1 -1.581 0.7984
BJ22221 0 0.1125 0.1002 1 -1.566 0.7841
OE221 0 0.1053 0.0920 1 -1.573 0.7889
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(a) Correlation plots of ARX (b) Correlation plots of OE

(c) Correlation plots of ARMAX (d) Correlation plots of BJ

Fig. 4: Autocorrelation and Cross correlation

Table 4: Parameter of H(q) for Non-Gaussian Noise case
c0 c1 c2 d0 d1 d2

Actual 1 -1.634 0.7567 1 -1.862 0.9851
ARX221 1 0 0 1 -1.199 0.4338
ARMAX2221 1 -1.122 0.5905 1 -1.581 0.7984
BJ22221 1 -1.673 0.7865 1 -1.872 0.9955
OE221 1 0 0 1 0 0

Table 5: Mean and Variance for Non-Gaussian Noise Case
Atual ARX ARMAX BJ OE

Mean -0.0117 -0.0026 -0.0071 -0.0155 -0.0197
Variance 0.0310 0.0750 0.1085 0.0302 0.1038
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(a) Magnitude plots of ARX
(b) Magnitude plots of ARMAX, OE,
BJ

(c) Phase plots of ARX (d) Phase plots of ARMAX, OE, BJ

Fig. 5: Bode plot of the parametric data-driven models with Non-Gaussian sensor
noise

5 Conclusion

In this research, we evaluated the performance of commonly used data-driven
methods like the direct approach and the parametric approach to Gaussian and
non-Gaussian noise. As the variance of the Gaussian noise increases from 0.01 to
0.05, the performance of the direct pulse response estimation techniques deteri-
orates. When the noise power is slightly increased by 5%, the method is not able
to determine the actual system. The direct approach with step input-output data
performed better than the direct approach with pulse input-output dataset to
both Gaussian and non-Gaussian noise. In the case of the parametric data-driven
modeling methods, the BJ data-driven modeling gave a better result. However,
in the case of non-Gaussian noise, the performance is not good enough, especially
above the cross-over frequency (Higher frequency). The performance of OE also
deteriorates under non-Gaussian noise because it assumes that the noise enters
the system without being filtered. Additionally, these methods assume a specific
form for the dynamical system, which may not always fit the underlying char-
acteristics of the system and the Gaussian/non-Gaussian noise that affects the
actual system.
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