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Abstract. Generalized zero-shot learning (GZSL) is focused on recog-
nizing classes, both seen and unseen, without the need for labeled data
specifically for the unseen classes. GZSL has attracted much attention by
transforming the traditional GZSL into a fully supervised learning task.
Most GZSL methods use a single semantic attribute(each category can
only correspond to a specific semantic attribute) plus Gaussian noise to
generate visual features, assuming a one-to-one correspondence between
these visual features and single semantic attributes. However, in prac-
tice, there may be cases of attribute missingness in images, leading to
visual features that lack certain attributes, thus failing to achieve a good
mapping between semantic attributes and visual features. Therefore, vi-
sual features of the same class should have diverse semantic attributes.
To address this issue, we propose a new method for enhancing seman-
tic attributes called "Interpolated Semantic Attribute Enhancement for
Generalized Zero-Shot Learning(ISAE-GZSL)." This method uses inter-
polation to deal with the problem of semantic attribute missingness in
real-world situations, thereby enhancing semantic diversity and generat-
ing more realistic and diverse visual features. We assess the performance
of the proposed model across four benchmark datasets, and the find-
ings demonstrate substantial enhancements over current state-of-the-art
methods, especially in handling categories with severe attribute missing-
ness in the datasets.

Keywords: Generalized zero-shot learning(GZSL) · semantic attribute
· feature generation · incomplete attribute.

1 Introduction

In recent years, deep learning has rapidly advanced, but it often relies on
large amounts of annotated image data to effectively train and generalize models.
However, in practical scenarios, new classes frequently arise, often with few or
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no training samples. Training with such scarce data can lead to poor model gen-
eralization. Hence, Zero-Shot Learning (ZSL) has emerged. ZSL aims to identify
new classes by leveraging auxiliary semantic knowledge as supplementary infor-
mation, mimicking the human cognitive process [1].

Fig. 1. ⋆ represents class-level semantic attributes, yellow ⋄ and ◦ represent real visual
features, green ⋄ and orange ◦ represent visual features generated by a single semantic
attribute plus Gaussian noise, red dashed lines represent correct classification bound-
aries, and two black dashed lines represent incorrect classification boundaries.

ZSL aims to classify unseen classes by establishing a mapping between the
visual and semantic domains. To facilitate the transfer of knowledge from seen
training data to unseen test data [2], category-level semantic attributes must be
utilized as supplementary information [2,3] to bridge the knowledge gap between
seen and unseen classes. These attributes play a crucial role as they are the sole
basis for inferring the visual features of unseen classes. Based on the scope of
classification, ZSL methods are divided into two categories: Traditional ZSL and
GZSL [4]. Traditional ZSL focuses on predicting unseen classes, while GZSL
extends this capability to include predictions for both unseen and seen classes.
In recent years, GZSL has garnered increasing attention due to its practicality
and increased difficulty. Therefore, this paper also adopts the GZSL framework.

To address the issue of seen class bias [5], GZSL methods have emerged, fo-
cusing on generating visual features for unseen classes. Specifically, Generative
Adversarial Networks (GANs) [6] and Variational Autoencoders (VAEs) [7] are
commonly used to generate features, thereby transforming the GZSL problem
into a traditional supervised classification task. In this paper, the classic gener-
ative model framework "Feature Generating Networks for Zero-Shot Learning"
(abbreviated as f-CLSWGAN) [8] is used.

In GZSL, auxiliary semantic attributes are typically associated with specific
classes, indicating that each class is characterized by a single semantic attribute.
The majority of GZSL approaches [9,10,11] synthesize visual features by directly
combining the semantic attribute of a single class with Gaussian noise. However,
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in practical scenarios, attribute incompleteness in images often occurs, causing
visual features generated from a single semantic attribute to inadequately rep-
resent the issue of attribute incompleteness in reality. This mismatch leads to
an inauthentic distribution of generated visual features, where the single seman-
tic attribute fails to map accurately to the generated features, thus creating
unstable classification boundaries. Consequently, the model’s ability to handle
samples with missing attributes is compromised. Illustrated in Fig. 1, the visual
features of some images may not contain all attribute information, the distribu-
tion of visual features from images with incomplete attributes is present within
the real visual feature distribution but is absent from the distribution of features
generated from a single semantic attribute, adversely affecting classification per-
formance.

To better simulate real-world scenarios (cases of attribute incompleteness)
and enhance the diversity of generated visual features, we propose a new method
called "Interpolated Semantic Attribute Enhancement for Generalized Zero-Shot
Learning" (abbreviated as ISAE-GZSL). This method aims to enhance the di-
versity of semantic attributes by interpolating the values of incomplete semantic
attributes, thereby improving the diversity of generated visual features. Initially,
the Expectation-Maximization (EM) algorithm is applied to cluster attributes
using the extracted attribute word vectors. Then, within each clustered group,
we use an interpolation method based on the correlation of semantic attributes
to set the values of incomplete semantic attributes. Next, to further enhance
the diversity of generated visual features, we introduce a diversity loss function.
Finally, we add a self-supervised learning module to enable the model to learn
how to generate visual features that are more diverse and realistic under incom-
plete semantic attribute conditions. Through these improvements, our model has
been optimized for handling missing attributes, thereby enhancing the quality
and diversity of generated samples.

The main contributions of this work are outlined as follows.

– We propose a novel approach that uses interpolation to address the issue
of missing attributes in practice. This method considers scenarios where
attributes are missing in real-world situations, enhancing the realism and
diversity of the generated visual features, thereby improving accuracy.

– Following the stringent evaluation protocol introduced in [4], our model is
assessed across four well-known zero-shot learning datasets, delivering com-
petitive performance across all of them.

Here’s the breakdown of the remaining sections: Section 2 delves into related
research, Section 3 offers a comprehensive outline of the ISAE-GZSL approach,
Section 4 showcases experimental outcomes, and Section 5 encapsulates our re-
search discoveries.

2 Related Work

In recent years, with the continuous development of generative models,
semantic-based ZSL generation methods have emerged. For example, f-CLSWGAN
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[8] used Generative Adversarial Networks (GAN) to generate visual features of
unseen classes for classification. Additionally, the LisGAN method [12] utilized
semantic descriptions to constrain the generation of features for unseen classes,
ensuring that they are derived from randomly generated noise. The combination
of GAN and Variational Autoencoder (VAE) in F-VAEGAN-D2 [13] resulted in
the generation of more realistic and diverse visual features for unseen classes. Tf-
vaegan [14] further introduced a Semantic Embedding Decoder, which enforces
cycle-consistency constraints on semantic embeddings during training, feature
synthesis, and classification stages. CE-GZSL [9], based on f-CLSWGAN, used
contrastive learning to achieve supervision over instances within and between
classes. Traditional generation methods typically synthesize visual features by
directly using single-class semantic attributes along with Gaussian noise to en-
rich the visual features. These generated visual features are assumed to contain
all semantic attributes (i.e., the generated visual features contain complete se-
mantic attributes). However, in reality, since images themselves may lack some
attributes, the extracted visual features often suffer from semantic attribute in-
completeness. Therefore, when there is a mismatch between visual features and
semantic attributes, the model fails to correctly identify the class, resulting in
a one-to-many scenario (where one semantic attribute corresponds to multiple
visual features within the same class). We believe that the semantic description
of visual features of the same class should be diverse. To achieve a many-to-many
scenario (where one semantic attribute corresponds to multiple visual features
and vice versa within the same class), this paper proposes an interpolation-
based method to enhance semantic attributes, addressing the issue of semantic
attribute incompleteness in generation methods.

3 Method

Here we initially present certain symbols and problem definitions. For train-
ing, we utilize s visible classes, while u unseen classes are employed for testing.
X represents visual features, Y represents class labels, and a represents class
semantic attributes. The sample set of seen classes is X s =

{
x1, x2, ..., xs

}
,

and the corresponding label set of seen classes is Ys =
{
y1, y2, ..., ys

}
, where

s represents the number of samples in the seen classes. The sample set of un-
seen classes is X u =

{
xs+1, xs+2, ..., xs+u

}
and the corresponding label set of

unseen classes is Yu =
{
ys+1, ys+2, ..., ys+u

}
, where u represents the number

of samples in the unseen classes. The set of attributes of seen classes is rep-
resented as As =

{
a1, a2, ..., as

}
, where s is the count of semantic attributes

of the seen classes, and the set of attributes of unseen classes is represented
as Au =

{
as+1, as+2, ..., as+u

}
, where u is the count of semantic attributes of

the unseen classes. In this study, we opt for the more realistic and challeng-
ing scenario of GZSL. The training dataset tuple T train can be represented
as T train = {X s,Ys,A}; the testing dataset tuple T test can be represented as
T test = {X ,A}, where X = X s∪X u, Y = Ys∪Yu, A = As∪Au and Ys∩Yu = ∅.
Therefore, the main goal of GZSL is to train a classifier F: X → Ys ∪Yu, where
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the search space includes the entire label space Ys ∪ Yu. The process of ISAE-
GZSL is shown in Fig. 2.

Fig. 2. ISAE-GZSL Architecture Diagram. ISAE-GZSL consists of a feature gener-
ation module f-CLSWGAN, a classifier (F ), and a self-supervised classifier (SSC).
Given a visual feature and attribute pair (xs, as), LWGAN trains the conditional dis-
criminator D by using real and synthetic features as inputs. Additionally, incomplete
visual features x̃π and incomplete attribute anew are introduced and optimized using
the diversity loss LDiv. Meanwhile, SSC further improves model performance through
self-supervised loss optimization. We optimized the parameters of the G, D, F, and
SSC modules during training.

3.1 Reviewing f-CLSWGAN Method

The generative model used in this paper is the f-CLSWGAN model, which
aims to improve the performance of the classifier in the GZSL task by generating
realistic features to compensate for the missing unseen classes in the training
set using a generative adversarial network (GAN). In the f-CLSWGAN method,
there are three key components: the conditional generator G (z, a)) (also denoted
as G), the discriminator D (xs, as) (also denoted as D), and the classifier F. G
generates realistic visual features based on the semantic attributes of the classes.
The input semantic attributes a include semantic descriptions of both seen and
unseen classes, and the output is the generated visual features (x̃s) . D takes as
input the features generated by the generator and real features, combined with
the semantic attributes of the classes, to learn to distinguish between them and
encourage the generator to produce more realistic features. The output of the
discriminator is a real value between 0 and 1, indicating the authenticity of the
input features. F ensures that the features can be correctly classified into the
corresponding classes. Both G and D are conditioned on embeddings using the
Wasserstein GAN (WGAN) loss function.
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The WGAN loss (LWGAN ) is:

LWGAN = E [D (xs, as)]− E [D(x̃s, as)]− λE
[(
|| ▽D

(
x′, as) ||2 − 1

)2]
, (1)

where x′ = τxs+(1− τ) x̃s, with τ sampled from a uniform distribution U (0, 1),
represents the blending of visual feature xs and a synthesized feature x̃s to
produce an intermediate feature x′, λ is a penalty coefficient.

The f-CLSWGAN model minimizes the classification loss of the generated
features by using the negative log likelihood function to ensure that the generated
features are suitable for training the discriminator.

The classification loss (LCLS) is:

LCLS = −Ex̃∼px̃ [logP (ys)| x̃s; θ], (2)

where x̃s = G(as, z) represents the generation of x̃s from z(z is random noise)
and as, with ỹs denoting the class label of x̃s. θ is the parameter set of a linear
softmax classifier that is pre-trained on the real features of seen classes. The
term (P (ys|(x̃s); θ) signifies the classifier’s prediction of label ỹs based on the
feature x̃s.

Therefore, the total loss of f-CLSWGAN is:

LCLSWGAN = min
G

max
D

LWGAN + νLCLS , (3)

where the parameter ν is specific to the classifier’s weighting.
Through the optimization of these loss functions, the f-CLSWGAN model

ensures that the generated features are indistinguishable from real features to
the discriminator, thereby enhancing the realism and diversity of the generated
features.

Fig. 3. Attribute of giant panda in the AWA1 dataset.

3.2 ISAE-GZSL Model

Attribute clustering.Traditional methods for generating visual features
often rely on a single semantic attribute per class (assuming that a single seman-
tic attribute already contains all relevant information for the class). However,
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in practical applications, the visual features of some images may not contain
all attribute information. For example, a photo of a bird perched on a tree,
its feet hidden by foliage, may not exhibit attribute information regarding its
claws, or a photo of a shark may lack many attribute details due to the diffi-
culty of capturing the entire body. Therefore, the visual features of these images
may not encompass all relevant semantic attribute information. Visual features
generated based on a single semantic attribute may not adequately simulate real-
world attribute incompleteness, leading to a lack of realism in the distribution of
generated visual features and unstable classification boundaries. Consequently,
the performance of the model in handling samples with missing attributes may
also be affected.

To address this situation, we borrow the concepts of complete and in-
complete attributes proposed in "Boosting Generative Zero-Shot Learning by
Synthesizing Diverse Features with Attribute Augmentation" (abbreviated as
SDFA2) [15], which has achieved good results, to generate visual features. The
specific steps are as follows: First, set the dimensions of certain semantic at-
tributes to 0 to indicate that the attribute is missing (e.g., setting the dimension
for the feet of a bird to 0 indicates missing attribute information for the feet).
When defining semantic attributes, some attribute dimensions do not exist or
are not meaningful for certain classes. Therefore, in these classes, the values of
these attributes are set to 0 (e.g., the "ocean" attribute dimension in the giant
panda class is set to 0 because giant panda do not have this attribute, as de-
picted in Fig. 3, where attributes are represented in an 85-dimensional space,
with blue indicating presence and white indicating absence of the attribute. It
can be observed that the position marked by the red dashed line corresponds to
the attribute "ocean" with a value of 0). To handle high-dimensional attribute
data, we use the Expectation-Maximization (EM) algorithm [16] to estimated
mean µπ, and then cluster the attributes into r clusters (i.e., k =

{
k1, k2, ..., kr

}
).

Optimal clustering is achieved by minimizing the squared error LEM :

LEM =
∑r

π=1

∑
vϵkπ ∥v − µπ∥ , (4)

where µπ is represents the average vector of cluster kπ , and the word vectors
v =

{
v1, v2, ..., vj

}
= Word2vec

{
a1, a2, ..., aj

}
, where Word2vec is a technique

that converts words into vectors, j is the number of attribute dimensions.
In the context of attribute grouping into r categories, SDFA2 defined aΠ

as the incomplete attribute, where π ranges from 1 to r, setting the π-th group
attribute of the semantic attribute a to 0. Setting the attributes of the π-th group
to 0 simulates incomplete attribute features. This method can more realistically
simulate the incompleteness of visual features and enhance the performance of
the model in handling samples with missing attributes.

Interpolation Based on Semantic Attribute Correlation. Neverthe-
less, we recognize that directly zeroing out semantic attributes might result in
generated samples deviating considerably from reality. In practical scenarios, it
is rare for all semantic attributes of an object to be 0. This setting may result
in unnatural generation outcomes, akin to forcibly removing certain attributes,
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which is not quite realistic in real-world scenarios. Therefore, we consider using
an interpolation method based on attribute correlation. Through interpolation,
we can learn more information from similar attributes(such as estimating ‘brown’
based on the presence of ‘black’ and ‘gray’), better estimate the values of missing
attributes, and thus more naturally simulate the situation of missing attributes.
This results in samples that better fit real-world scenarios, making the generated
samples more diverse and realistic.

– For each cluster kπ, πϵ[1, r] in aΠ , calculate the average value Aπ
avg of all

non-zero attribute values a′ :

Aπ
avg =

1

L

∑L
n=1a

′
n, (5)

where a′n represents the n-th non-zero attribute value of a′, L is the length
of a′.

– For each attribute aπi in the cluster kπ, calculate the intra-cluster attribute
similarity ω:

ω = Cos(aπb×j , a
t
b×j) =

aπi × aπt
∥aπi ∥ ∥aπt ∥

, (6)

where b is the batch size, j is the number of attribute dimensions, aπi is
current attribute, and aπt ϵ(k

π − aπi ). Both aπi and aπt are two-dimensional
matrices of shape (b× j).

– Assuming the current attribute is aπi , and aϖi is the most similar attribute
within the cluster that meets the similarity threshold, excluding aπi , based
on L, we set the incomplete attribute values in the following three cases:

anew =


ω × aπi + (1− ω)× aϖi , if L > 1 and ω >= Φ

Aπ
avg , if L > 1 and ω < Φ

aπi , if L = 1

0 , if L = 0

, (7)

when L > 1 and ω ≥ Φ (where Φ is the set threshold, which is taken as 0.9 in
this paper.), select the most similar attribute aϖi within the current cluster
for linear interpolation. When L > 1 and ω < Φ, use Aπ

avg for interpolation.
When L = 1, meaning there is only one non-zero value among all attribute
values of the current attribute aπi , set anew = aπi . When L = 0, meaning
all attribute values of the current attribute aπi are zero, indicating that this
attribute does not exist in the category, directly set the attribute value to 0.

Through the above steps, we can obtain the interpolated attribute values,
i.e., the incomplete attribute values(such as setting the foot attribute of a bird to
anew when its feet are covered by leaves). Then, use these incomplete attribute
values to generate visual features, which simulates the situation of missing at-
tributes in the original samples, thereby making the distribution of generated
visual features more realistic.
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3.3 Diversity Loss

To increase the diversity of generated visual features and broaden their
distribution in the attribute space, it is necessary to ensure greater differences
between the generated features corresponding to different attributes (both in-
complete and complete semantic attributes). If there are larger differences be-
tween attributes, then the generated visual features will also be more diverse. In
order to let the model learn to generate more diverse and distinguishable features
based on different attributes, thereby enhancing the diversity and authenticity
of the generated samples, we introduce a diversity loss LDiv for optimization:

LDiv = E [D (xs, as)]− 1

r

∑r
π=1{E

[
D(x̃π, aΠ)

]
− λE

[(
|| ▽D (x̌π, as) ||2 − 1

)2]},
(8)

where as is the complete semantic attribute, aΠ is the incomplete semantic
attribute, and x̃π = G(aΠ , z) is the visual feature generated by aΠ and z. The
last term is the gradient penalty, where x̌π = τx + (1 − τ)x̃π , and τ follows
a uniform distribution U(0, 1). λ is the penalty coefficient, r is the number of
clusters into which the attributes are divided.

3.4 Self-supervised Loss

To teach the model how to generate more diverse and realistic visual features
based on incomplete semantic attributes, we need the model to recognize which
attribute information is missing from the generated visual features. To achieve
this, we train a learnable incomplete attribute identification classifier ( SSC :
x → hπ ), allowing the model to learn a new mapping relationship between
attributes and labels. For incomplete semantic attributes aΠ that are missing a
certain group of attributes, we use interpolation based on attribute correlation
to set all attributes of the π-th group to a new value anew , making the attribute
values more realistic and diverse. At the same time, we set a self-supervised label
hπ for the generated visual features, indicating that these features lack this group
of attributes. Specifically, hπ is initialized as a one-dimensional vector starting
from 1. Depending on which group of attributes is missing (e.g., if the r-th group
is missing), the corresponding positions in hπ are set to r, resulting in hπ being
set as [r, r, ..., r]. This is optimized through self-supervised loss LSelf :

LSelf = −E [logP (hπ|x̃π; ξ)] , (9)

where x̃π = G(aΠ , z) represents the visual feature obtained from the incomplete
attribute aΠ and z, hπ is the corresponding self-supervised label, and ξ represents
the set of learnable parameters of SSC.

The overall loss is:

Ltotal = LCLSWGAN + κLDiv + ηLSelf , (10)

where κ and η are hyperparameters.
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Algorithm 1 Interpolated Incomplete Semantic Attribute Enhancement for
GZSL(ISAE-GZSL)
1: Input: Seen data xs ∈ X , Unseen data xu ∈ X , Random noise z ,Complete

semantic attributes as ∪ au ∈ A, Incomplete semantic attributes aΠ ∈ A and
Number of training epochs T .

2: Training:
3: for i = 1 to T do
4: G generates visual features by x̃s = G(as, z) and x̃π = G(aΠ , z).
5: D discriminates between real and generated visual features by Eq.(8).
6: Calculate the LSelf by solving Eq.(9).
7: Calculate the LCLS using x̃s, x̃π and xs by solving Eq.(2).
8: Calculate the Ltotal by solving the Eq.(10).
9: end for

10: Output(Testing): Using F for prediction: X → Ys ∪ Yu.

3.5 Training

Our method utilizes both complete and incomplete semantic attributes when
generating visual features. We generate visual features based on different propor-
tions of complete and incomplete semantic attributes. These features are then
used to train the classifier, thereby enhancing the diversity and realism of the
model. The detailed algorithm for ISAE-GZSL is provided in Algorithm 1.

4 Experiments

Datasets and Experimental settings. We evaluated our method on four
benchmark ZSL/GZSL datasets: Apy [3], AWA1 [17], CUB [18] and SUN [19].
Similar to most popular methods, all datasets in this paper were extracted us-
ing ResNet101 to obtain 2048-dimensional visual features, without further fine-
tuning. Additionally, all datasets followed the consistent visible/invisible class
data partitioning and class embedding methods described in [4]. For detailed
information, please refer to Table 1. We implemented the proposed method in
the PyTorch framework and conducted experiments using an NVIDIA GeForce
RTX 3080 GPU.

Evaluation Protocols. During the evaluation phase, for consistency, we
compared using the evaluation metrics proposed in [7]. For GZSL, it is necessary
to separately calculate the seen class accuracy (S) and the unseen class accuracy
(U), where S represents the average per-class Top-1 accuracy for the seen classes,
and U represents the average per-class Top-1 accuracy for the unseen classes.
The performance of GZSL is evaluated by their harmonic mean: H = (2 × S
× U ) / ( S + U ). The reason H is used as the key evaluation metric is that
it balances the performance between the U and S metrics. A higher H value
indicates higher accuracy for both U and S.

Implementation Details. The network optimization employs the Adam
algorithm [20], with the parameters β1 and β2 set to 0.5 and 0.999, respectively.
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Table 1: Evaluation dataset characteristics.

train images test images(S/U) class(S/U) Granularity Att

Apy [3] 5932 7924/1483 20/12 Coarse 64

AWA1 [17] 19832 5685/4958 40/10 Coarse 85

CUB [18] 7057 2679/1764 150/50 Fine 312

SUN [19] 10320 1440/2580 645/72 Fine 102

Table 2: State-of-the-art comparisons on four datasets. The best results are highlighted
in red and the symbol "*" represents baseline. Here, U represents the Top-1 accuracy
for unseen classes, S represents the Top-1 accuracy for seen classes, and H is the
harmonic mean of both.

Methods Apy AWA1 CUB SUN

U S H U S H U S H U S H

f-CLSWGAN* [8] 32.9 61.7 42.9 57.9 61.4 59.6 43.7 57.7 49.7 42.6 36.6 39.4

SDFA2[15] 38.0 62.8 47.4 59.1 72.8 65.2 51.5 57.5 54.3 48.7 36.9 42.0

ISAE-GZSL(Ours)37.2 68.9 48.359.6 73.4 65.852.2 57.1 54.548.1 37.1 42.2

Similar to the method described in reference [21], the coefficient λ for the gradient
penalty starts from an initial value of 10, which is employed during WGAN
training. For consistency, we use the same number of clustering groups r as in
[15] and maintain consistency in the ratio of complete semantic attributes to
incomplete semantic attributes. For more information, please refer to reference
[8].

4.1 Comparison with Baseline

The main baseline model in this paper is f-CLSWGAN, which enhances ZSL
performance by generating high-quality sample features using the conditional
WGAN-GP framework based on category attributes. For detailed information
about it, please refer to Section 3.1.

From Table 2, it can be seen that our method achieves the highest H values.
Compared to the f-CLSWGAN method, our method improves the H values by
2.8%, 4.8%, 5.4%, and 6.2% on the SUN, CUB, Apy, and AWA1 datasets, re-
spectively. Compared to the SDFA2 method, our method improves the H values
by 0.2%, 0.2%, 0.6%, and 0.9% on the CUB, SUN, AWA1, and Apy datasets,
respectively. Additionally, from Table 2, it can be observed that on the Apy and
SUN datasets, the U values have a slight decrease, while on the Apy, AWA1,
and CUB datasets, the S values have a significant increase. The reason for the
decrease in U values may be that our method fails to better capture the feature
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distribution of unseen classes, and the diversity features generated by interpola-
tion fail to fully cover the feature space of unseen classes. At the same time, it
can also be observed that the improvement in fine-grained datasets (CUB and
SUN) is not as significant as in coarse-grained datasets (Apy and AWA1), possi-
bly because the fine-grained datasets have small differences between categories,
so the diversity of attribute changes generated by interpolation is not obvious.

4.2 Visualizations

Our method and the SDFA2 method both generate visual features through
diverse attributes, which is different from traditional methods that typically only
introduce Gaussian noise to increase diversity. To further validate the effective-
ness of our method, we conducted t-SNE visualization [22] on the unseen classes
of the AWA and CUB datasets and compared them with the SDFA2 method.
From Fig.4 and 5, it can be seen that our method has more stable classification
boundaries. Additionally, our method also exhibits some diversity in feature dis-
tribution, with feature points of the same class having a wider distribution range
in the visualization.

(a) SDFA2. (b) ISAE-GZSL.

Fig. 4. t-SNE visualization of unseen class images synthesized by SDFA2(a) and ISAE-
GZSL(b) in the GZSL on the AWA1 datasets.

4.3 Comparison of Attribute Missingness

Since the proportion of datasets with missing attributes in our four datasets
is relatively small, the improvement of our method in Table 2 is not signifi-
cant. To further demonstrate the effectiveness of our method in enhancing at-
tributes through interpolation, generating diverse visual features, and mitigating
attribute missingness in datasets, we conducted further analysis. Fig. 6 shows a
comparison of the class accuracies between the SDFA2 method and our method
on the AWA dataset. From the figure, we can see that our method has higher
accuracy in 21 classes compared to the SDFA2 method, while the SDFA2 method
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(a) SDFA2. (b) ISAE-GZSL.

Fig. 5. t-SNE visualization of unseen class images synthesized by SDFA2(a) and ISAE-
GZSL (b) in the GZSL on the CUB datasets.

Fig. 6. Comparison of Class Accuracy on the AWA1 Dataset.

(a) blue whale. (b) kill whale.

Fig. 7. The classes with higher classification accuracy under the ISAE-GZSL method.

(a) fox. (b) sheep.

Fig. 8. The classes with higher classification accuracy under the SDFA2 method.
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has higher accuracy in 16 classes. Especially in the classes where our method
performs better (such as blue whale and kill whale, according to Fig. 7) com-
pared to those where SDFA2 performs better (such as fox and sheep, according
to Fig. 8), most images in these classes suffer from severe attribute missingness
issues. This problem of attribute absence is more pronounced in these datasets.
Based on these observations, our method demonstrates greater effectiveness in
handling attribute missingness compared to SDFA2.

5 Conclusion

In this work, we propose a novel method to enhance the generation of se-
mantic attributes. By using interpolation to address the issue of semantic at-
tribute incompleteness in practical scenarios, we enhance the diversity of seman-
tic attributes. This approach makes the distribution of generated visual features
closer to the distribution of real visual features, while also making the gen-
erated visual features more diverse. Experimental results show that compared
to state-of-the-art methods, our approach performs better when dealing with
categories in datasets with severe attribute missingness, significantly improving
performance. In future studies, we aim to explore advanced interpolation meth-
ods to enhance diverse semantic attribute representation and address attribute
missingness, thereby improving GZSL applications.
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